当0<t<时,f′在区间(0,)上是增函数; 8分 查看更多

 

题目列表(包括答案和解析)

已知

(1)求的单调区间;

(2)证明:当时,恒成立;

(3)任取两个不相等的正数,且,若存在使成立,证明:

【解析】(1)g(x)=lnx+=        (1’)

当k0时,>0,所以函数g(x)的增区间为(0,+),无减区间;

当k>0时,>0,得x>k;<0,得0<x<k∴增区间(k,+)减区间为(0,k)(3’)

(2)设h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 当x变化时,h(x),的变化情况如表

x

1

(1,e)

e

(e,+)

 

0

+

h(x)

e-2

0

所以h(x)0, ∴f(x)2x-e                    (5’)

设G(x)=lnx-(x1) ==0,当且仅当x=1时,=0所以G(x) 为减函数, 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,综上,当x1时, 2x-ef(x)恒成立.

(3) ∵=lnx+1∴lnx0+1==∴lnx0=-1      ∴lnx0 –lnx=-1–lnx===(10’)  设H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t) <H(1)=0∵=

∴lnx0 –lnx>0, ∴x0 >x

 

查看答案和解析>>

设数列{an}满足a1=t,a2=t2,前n项和为Sn,且Sn+2-(t+1)Sn+1+tSn=0(n∈N*).
(1)证明数列{an}为等比数列,并求{an}的通项公式;
(2)当<t<2时,比较2n+2-n与tn+t-n的大小;
(3)若<t<2,bn,求证:

查看答案和解析>>

已知函数f(x)的定义域为[-1,5],部分对应值如下表.f(x)的导函数yf′(x)的图象如图所示.

下列关于函数f(x)的命题:

①函数yf(x)是周期函数;

②函数f(x)在[0,2]上是减函数;

③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;

④当1<a<2时,函数yf(x)-a有4个零点.

其中真命题的个数有                                                 (  ).

A.4        B.3        C.2        D.1

查看答案和解析>>

以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (t为参数,0<a<),曲线C的极坐标方程为

(I)求曲线C的直角坐标方程;

(II)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.

 

查看答案和解析>>

已知数列{xn}的各项为不等于1的正数,其前n项和为Sn,点Pn的坐标为(xn,Sn),若所有这样的点Pn (n=1,2,…)都在斜率为k的同一直线(常数k≠0,1)上.

   (Ⅰ)求证:数列{xn}是等比数列;

   (Ⅱ)设满足

 

ys=,yt=s,t∈N,且s≠t)共中a为常数,且1<a<,试判断,是否存在自然

数M,使当n>M时,xn>1恒成立?若存在,求出相应的M;若不存在,请说明理由

查看答案和解析>>


同步练习册答案