设为常数.动点 .分别与两定点的连线的斜率之积为定值λ.若点M的轨迹是离心率为的双曲线.则λ的值为 ( ) 查看更多

 

题目列表(包括答案和解析)

为常数,点的坐标分别是,动点连线的斜率之积为定值,若点的轨迹是离心率为的双曲线(去掉双曲线的两个顶点),则的值为

A.2                   B.-2                 C.3                  D.

查看答案和解析>>

设a>0为常数,动点M(x,y)(y≠0)分别与两定点F1(-a,0),F2(a,0)的连线的斜率之积为定值λ,若点M的轨迹是离心率为
3
双曲线,则λ的值为(  )
A、2
B、-2
C、3
D、
3

查看答案和解析>>

设a>0为常数,动点M(x,y)(y≠0)分别与两定点F1(-a,0),F2(a,0)的连线的斜率之积为定值λ,若点M的轨迹是离心率为双曲线,则λ的值为( )
A.2
B.-2
C.3
D.

查看答案和解析>>

设a>0为常数,动点M(x,y)(y≠0)分别与两定点F1(-a,0),F2(a,0)的连线的斜率之积为定值λ,若点M的轨迹是离心率为数学公式双曲线,则λ的值为


  1. A.
    2
  2. B.
    -2
  3. C.
    3
  4. D.
    数学公式

查看答案和解析>>

设动点P到两定点F1(-1,0 )和F2(1,0 ) 的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ,
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)如图过点F2的直线与双曲线C的右支交于A、B两点,问:是否存在λ,使△F1AB是以点B为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由。

查看答案和解析>>

1.D   2.C   3.C   4.D   5.A  6.D   7.B   8.C   9.A   10.B

11.B     12.D

13.      14.       15.  11       16.

                                                                              

17.(本小题满分12分)

解:(1)

  又

 

   (2)

  又

  

18.(本小题满分12分)

解:(1)

    ∴

(2)∵

   最小正周期为

的单调递增区间为

19.(本小题满分12分)

  解:(1成等差数列,

    

    

     

    

  2

    

         

         

          

         

 

20、(本小题满分12分)

(I)解:由

      

      

   (II)由

       ∴数列{}是以S1+1=2为首项,以2为公比的等比数列,

      

       *当n=1时a1=1满足

   (III)

       ,②

       ①-②得

       则.

21、(本小题满分12分) (1)证明:

  (即的对称轴

  

  

   (2)由(1).

  

  经判断:极小

  为0;  

  .

22、(本小题满分12分)

解:(1)由椭圆定义及已知条件知2a=|F1B|+|F2B|=10,∴a=5.

又c=4,∴b2=a2-c2=9.

故椭圆方程为+=1.                                                

(2)由点B在椭圆上,可知|F2B|=|yB|=,而椭圆的右准线方程为x=,离心率为

由椭圆定义有|F2A|=(-x1),|F2C|=(-x2).

依题意|F2A|+|F2C|=2|F2B|.

(-x1)+(-x2)=2×.

∴x1+x2=8.

设弦AC的中点为P(x0,y0),则x0==4,

即弦AC的中点的横坐标为4.                                              

(3)由A(x1,y1),C(x2,y2)在椭圆上得9x12+25y12=9×25,9x22+25y22=9×25.

两式相减整理得9()+25()()=0(x1≠x2).

=x0=4,=y0=-(k≠0)代入得

9×4+25y0(-)=0,即k=y0.

由于P(4,y0)在弦AC的垂直平分线上,

∴y0=4k+m,于是m=y0-4k=y0-y0=-y0.

而-<y0<,∴-<m<.          

 

 

 

 


同步练习册答案