(Ⅰ) 求证:数列为等比数列, 查看更多

 

题目列表(包括答案和解析)

等比数列{xn}各项均为正值,yn=2logaxn(a>0且a≠1,n∈N*),已知y4=17,y7=11
(1)求证:数列{yn}是等差数列;
(2)数列{yn}的前多少项的和为最大?最大值是多少?
(3)求数列{|yn|}的前n项和.

查看答案和解析>>

等比数列{an}单调递增,且满足:a1+a6=33,a3a4=32.
(1)求数列{an}的通项公式;
(2)数列{bn}满足:b1=1且n≥2时,a2abna2n-2成等比数列,Tn为{bn}前n项和,cn=
Tn+1
Tn
+
Tn
Tn+1
,证明:2n<c1+c2+…+cn<2n+3(n∈N*).

查看答案和解析>>

等比数列{cn}满足cn+1+cn=5•22n-1,n∈N*,数列{an}满足an=log2cn
(Ⅰ)求{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
1
anan+1
,Tn为数列{bn}的前n项和.求证:Tn
1
2

(Ⅲ)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n 的值;若不存在,请说明理由.

查看答案和解析>>

等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn),均在函数y=2x+r(其中r为常数)的图象上.
(1)求r的值;
(11)记bn=2(log2an+1)(n∈N+
证明:对任意的n∈N+,不等式
b1+1
b1
b2+1
b2
bn+1
bn
n+1
成立.

查看答案和解析>>

等比数列{xn}各项均为正值,yn=2logaxn(a>0且a≠1,n∈N*),已知y4=17,y7=11.
(1)求证:数列{yn}是等差数列;
(2)数列{yn}的前多少项的和为最大?最大值为多少?
(3)当n>12时,要使xn>2恒成立,求a的取值范围.

查看答案和解析>>

 

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.A   2.B    3.C   4.A   5.B

6.D   7.A   8.C   9.D   10.C

 

二、填空题:本大题共4小题,每小题4分,共16分.

11.    12.    13.    14.

15.       16.(也可表示成)    17.①②③

 

三、解答题:本大题共6小题,共74分.

18.解:(Ⅰ)由

                                         ---------4分

,得

,即为钝角,故为锐角,且

.                                     ---------8分

(Ⅱ)设

由余弦定理得

解得

.                        ---------14分

 

19.解:(Ⅰ)由,得

则平面平面

平面平面,

在平面上的射影在直线上,

在平面上的射影在直线上,

在平面上的射影即为点,

平面.                                 --------6分

(Ⅱ)连接,由平面,得即为直线与平面所成角。

在原图中,由已知,可得

折后,由平面,知

,即

则在中,有,则

即折后直线与平面所成角的余弦值为.       --------14分

 

20.解:(Ⅰ)由

,故

故数列为等比数列;                       --------6分

 

 

 

(Ⅱ)由(Ⅰ)可知

对任意的恒成立

由不等式恒成立,得

.           --------14分

 

21.解:

(Ⅰ)由已知可得

此时,                                 --------4分

的单调递减区间为;----7分

(Ⅱ)由已知可得上存在零点且在零点两侧值异号

时,,不满足条件;

时,可得上有解且

①当时,满足上有解

此时满足

②当时,即上有两个不同的实根

无解

综上可得实数的取值范围为.           --------15分

 

22.解:(Ⅰ)(?)由已知可得

则所求椭圆方程.          --------3分

(?)由已知可得动圆圆心轨迹为抛物线,且抛物线的焦点为,准线方程为,则动圆圆心轨迹方程为.     --------6分

(Ⅱ)由题设知直线的斜率均存在且不为零

设直线的斜率为,则直线的方程为:

联立

消去可得                 --------8分

由抛物线定义可知:

-----10分

同理可得                                --------11分

(当且仅当时取到等号)

所以四边形面积的最小值为.                   --------15分

 

 


同步练习册答案