题目列表(包括答案和解析)
(本小题满分12分) 已知点A(1,1)是椭圆
上一点,F1,F2是椭圆的两焦点,且满足
(I)求椭圆的两焦点坐标; (II)设点B是椭圆上任意一点,如果|AB|最大时,求证A、B两点关于原点O不对称;
(本小题满分12分)已知函数
.
(1)若
,试确定函数
的单调区间;(2)若
,且对于任意
,
恒成立,试确定实数
的取值范围;(3)设函数
,求证:
.
(本小题满分12分)已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项。
(1)求数列{an}的通项公式;
(2)若bn=
,sn=b1+b2+┉+bn,对任意正整数n,sn+(n+m)an+1<0恒成立,试求m的取值范围。
(本小题满分12分)
已知函数
.
(1)当
时,求函数
的单调区间和极值;
(2)当
时,若对任意
,均有
,求实数
的取值范围;
(3)若
,对任意
、
,且
,试比较
与
的大小.
(本小题满分12分)已知函数
,点
是函数
图像上任意一点,点
关于原点的对称点
的轨迹是函数
的图像. (Ⅰ)当
时,解关于
的不等式
; (Ⅱ)当
,且
时,总有
恒成立,求
的取值范围.
一、BDCBA,BDCDC,BB
二、13. 14.8; 15.; 16. ③④
三、17、
解:(Ⅰ)
……………2分
由题意知对任意实数x恒成立,
得,
………………………………………………………6分
(Ⅱ)由(Ⅰ)知
由,解得
所以,的单调增区间为……………………12分
18、
解:(Ⅰ)证明取SC的中点R,连QR, DR.。
由题意知:PD∥BC且PD=BC;
QR∥BC且QP=BC,
QR∥PD且QR=PD。
PQ∥PR,又PQ面SCD,PQ∥面SCD. …………6分
(Ⅱ)法一:
…………12分
(Ⅱ)法二:以P为坐标原点,PA为x轴,PB为y轴,PS为z轴建立空间直角坐标系,则S(),B(),C(),Q(),
面PBC的法向量为(),设为面PQC的法向量,
由
COS
…………12分
19、解
设A,B两点的坐标为()、()则
(Ⅰ)经过A、B两点的直线方程为
由得:
令得:
从而
(否则,有一个为零向量)
代入(1)得
始终经过这个定点 …………………(6分)
(Ⅱ)设AB中点的坐标为(),则
又
即
AB的中点到直线的距离d为:
因为d的最小值为 ……………(12分)
20、解:(Ⅰ)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总是1,2,即只能取表格第1,2列中的数字作为密码.
…………………………………………………………………4分
(Ⅱ)由题意可知,ξ的取值为2,3,4三种情形.
若ξ= 3,注意表格的第一排总含有数字1,第二排总含有数字2则密码中只可能取数字1,2,3或1,2,4.
若
(或用求得). ………………………………………………8分
的分布列为:
ξ
2
3
4
p
……………………………………………12分
21、
(Ⅰ)
时,,即
当时,
即
在上是减函数的充要条件为 ………(4分)
(Ⅱ)由(Ⅰ)知,当时为减函数,的最大值为;
当时,
当时,当时
即在上是增函数,在上是减函数,时取最大值,最大值为
即 ………………(9分)
(Ⅲ)在(Ⅰ)中取,即
由(Ⅰ)知在上是减函数
,即
,解得:或
故所求不等式的解集为[ ……………(13分)
22、
解::⑴
,
,即为的表达式。 (6分)
⑵,,又()
要使成立,只要,即,
即为所求。
⑶
故有
(13分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com