因此所求椭圆的方程为 .得F­1. 查看更多

 

题目列表(包括答案和解析)

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于A、B两点,使得.

(1)求椭圆的标准方程;           (2)求直线l的方程.

【解析】(1)中利用点F1到直线x=-的距离为可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到椭圆的方程。(2)中,利用,设出点A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在椭圆+y2=1上, 得到坐标的值,然后求解得到直线方程。

解:(1)∵F1到直线x=-的距离为,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵椭圆的焦点在x轴上,∴所求椭圆的方程为+y2=1.……4分

(2)设A(x1,y1)、B(x2,y2).由第(1)问知

,

……6分

∵A、B在椭圆+y2=1上,

……10分

∴l的斜率为.

∴l的方程为y=(x-),即x-y-=0.

 

查看答案和解析>>

求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.

【解析】利用圆心和半径表示圆的方程,首先

设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3,  ………4分

和y=-2x联立解得x=1,y=-2,即圆心(1,-2)  

∴r=,

故所求圆的方程为:=2

解:法一:

设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3,  ………4分

和y=-2x联立解得x=1,y=-2,即圆心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圆的方程为:=2                   ………………………12分

法二:由条件设所求圆的方程为: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圆的方程为:=2             ………………………12分

其它方法相应给分

 

查看答案和解析>>

已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l过P(-
1
2
1
2
)
且与椭圆相交于A,B两点,当P是AB的中点时,求直线l的方程.

查看答案和解析>>

如图所示,F1、F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,M为椭圆上一点,MF2垂直于x轴,且OM与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)过F2有与OM垂直的直线交椭圆于P、Q两点,若S△PF1Q=20
3
,求椭圆的方程.

查看答案和解析>>

已知矩形ABCD的边AB=4cm,BC=3cm,如图所示,矩形的顶点A,B为某一椭圆的两个焦点,且椭圆经过矩形的另外两个顶点C,D,试建立适当的坐标系,求椭圆的方程.

查看答案和解析>>


同步练习册答案