(2)当时.由解得 查看更多

 

题目列表(包括答案和解析)

5.A解析:因为函数有0,1,2三个零点,可设函数为f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax

因此b=-3a,又因为当x>2时f(x)>0所以a>0,因此b<0

若由一个2*2列联表中的数据计算得k=4.013,那么有          把握认为两个变量有关系.

查看答案和解析>>

5.A解析:因为函数有0,1,2三个零点,可设函数为f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax
因此b=-3a,又因为当x>2时f(x)>0所以a>0,因此b<0
若由一个2*2列联表中的数据计算得k=4.013,那么有         把握认为两个变量有关系.

查看答案和解析>>

在数列中,,当时, 

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列的前项和.

【解析】本试题主要考查了数列的通项公式的求和 综合运用。第一问中 ,利用,得到,故故为以1为首项,公差为2的等差数列. 从而     

第二问中,

,从而可得

为以1为首项,公差为2的等差数列.

从而      ……………………6分

(2)……………………9分

 

查看答案和解析>>

对函数Φ(x),定义fk(x)=Φ(xmk)+nk(其中x∈(mkmmk],kZm>0,n>0,且mn为常数)为Φ(x)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3.

(1)当Φ(x)=2x

①求f0(x)和fk(x)的解析式;

②求证:Φ(x)的各阶阶梯函数图象的最高点共线;

(2)若Φ(x)=x2,则是否存在正整数k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

对函数Φ(x),定义fk(x)=Φ(xmk)+nk(其中x∈(mkmmk],kZm>0,n>0,且mn为常数)为Φ(x)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3.

(1)当Φ(x)=2x

①求f0(x)和fk(x)的解析式;

②求证:Φ(x)的各阶阶梯函数图象的最高点共线;

(2)若Φ(x)=x2,则是否存在正整数k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案