不等式选修有关问题:大部分已复习.一定要有所体现. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

已知函数f(x)=alnxbx,且f(1)= -1,f′(1)=0,

⑴求f(x);

⑵求f(x)的最大值;

⑶若x>0,y>0,证明:lnx+lny.

本题主要考查函数、导数的基本知识、函数性质的处理以及不等式的综合问题,同时考查考生用函数放缩的方法证明不等式的能力.

查看答案和解析>>

(12分)先阅读下列框图,再解答有关问题:

(Ⅰ)当输入的分别为1,2,3时,各是多少?

(Ⅱ)当输入已知量时,

①输出的结果是什么?试证明之;

②输出S的结果是什么?写出求S的过程

查看答案和解析>>

(本小题满分10分)选修4-5:不等式选修

的前提下,求a的一个值,是它成为的一个充分但不必要条件。

 

查看答案和解析>>

阅读下列材料,回答有关问题:

    2005年7月28日,BP位于美国得克萨斯市的炼油厂晚间发生爆炸,同样在7月28日,BP在其大本营英国北海的深水油田也发生了严重火灾.受其影响,全球油价7月29日再度突破60美元大关.随后沙特国王死亡引起对沙特政局的担忧,接下来一连串的飓风袭来,最后是飓风“卡特里娜”一举使油价突破70美元的大关,创下70.85美元/桶的历史记录.

    国际能源署IEA预计,到2005年底,飓风导致美国损失的原油以及天然气液化产量约1.4亿桶,成品油产量损失1.63亿桶.

    进入2006年,先是俄罗斯与乌克兰的石油管道问题,随后是基地组织将要袭击美国的威胁、尼日利亚的恐怖袭击以及伊朗的核问题不断出现,在美国气温高于往年平均气温导致需求不太旺盛的情况下,不到一个月的时间就将油价推高12美元/桶.可见突发事件对油价影响的巨大.

    在2005年原油的第二轮上涨中,基金持有的净多单数量远低于第一轮时的净多单,但是原油上涨的幅度远大于第一轮上涨的幅度,2005年9月以后基金绝大部分时间持有净空单,但是原油价格仍在高位,就是因为不断出现的突发消息助推油价.政治因素与突发事件导致的对原油供应不足的担忧,在原油上涨中可能起到20%—25%的作用.

(1)怎样理解“可见突发事件对油价影响的巨大”这句话的含义,如果是你,你将怎样得出这样的结论?

(2)为了尽量避免经济损失,我们应该怎样对经济进行统计分析?

查看答案和解析>>


同步练习册答案