[解答]Ⅰ.解:厚度为的带钢经过减薄率均为的对轧辊后厚度为 查看更多

 

题目列表(包括答案和解析)

一段长为32米的篱笆围成一个一边靠墙的矩形菜园,墙长18米,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?

【解析】解:令矩形与墙垂直的两边为宽并设矩形宽为,则长为

所以矩形的面积   ()     (4分=128    (8分)

当且仅当时,即时等号成立,此时有最大值128

所以当矩形的长为=16,宽为8时,

菜园面积最大,最大面积为128 (13分)答:当矩形的长为16米,宽为8米时。菜园面积最大,最大面积为128平方米(注:也可用二次函数模型解答)

 

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

解关于的不等式:

【解析】解:当时,原不等式可变为,即            (2分)

 当时,原不等式可变为         (5分)  若时,的解为            (7分)

 若时,的解为         (9分) 若时,无解(10分) 若时,的解为  (12分综上所述

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为:

 

查看答案和解析>>

乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换。每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。

(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;

(Ⅱ)表示开始第4次发球时乙的得分,求的期望。

【解析】解:

 

查看答案和解析>>


同步练习册答案