已知函数.并且当时..则的图象的交点个数为(A) 2 (B) 3 (C) 4 (D) 5 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<
π
2
),它的图象的相邻两条对称轴之间的距离是
π
2
,当函数f(x)的图象向右平移
π
6
个单位时,得到函数g(x)的图象,并且g(x)是奇函数,则φ=
π
3
π
3

查看答案和解析>>

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
b-a
b
<ln
b
a
b-a
a
(可不用证明函数的连续性和可导性).

查看答案和解析>>

已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<
π
2
),它的图象的相邻两条对称轴之间的距离是
π
2
,当函数f(x)的图象向右平移
π
6
个单位时,得到函数g(x)的图象,并且g(x)是奇函数,则φ=______.

查看答案和解析>>

已知函数f(x)=lnx-ax2+bx(a>0),且(1)=0.

(Ⅰ)试用含有a的式子表示b,并求f(x)的极值;

(Ⅱ)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2),如果在函数图象上存在点M(x0,y0)(其中x0∈(x1,x2)),使得点M处的切线l∥AB,则称AB存在“伴随切线”.特别地,当x0时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图象上是否存在两点A、B使得它存在“中值伴随切线”,若存在,求出A、B的坐标,若不存在,说明理由.

查看答案和解析>>

已知函数(a>0),且f′(1)=0.
(Ⅰ)试用含有a的式子表示b,并求f(x)的极值;
(Ⅱ)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2),如果在函数图象上存在点M(x,y)(其中x∈(x1,x2)),使得点M处的切线l∥AB,则称AB存在“伴随切线”.特别地,当时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图象上是否存在两点A、B使得它存在“中值伴随切线”,若存在,求出A、B的坐标,若不存在,说明理由.

查看答案和解析>>

一、选择题(本大题共12小题,每小题5分,共60分)

1~5  D A B D C    6~10  C A B D B     11~12  C A

二、填空题(本大题共4小题,每小题4分,共16分)

13.;     14.21 ;       15. ;      16..

三、解答题(本大题共6小题,共74分)

17.(本题满分13分)

解:(1)甲、乙两卫星各自预报一次,记“甲预报准确”为事件A,“乙预报准确”为事件B.则两卫星只有一颗卫星预报准确的概率为:

 … 4分

             = 0.8×(1 - 0.75) + (1 - 08)×0.75 = 0.35   …………6分

答:甲、乙两卫星中只有一颗卫星预报准确的概率为0.35  ………7分

(2) 甲独立预报3次,至少有2次预报准确的概率为

         …………10分

    ==0.896             ………………………12分

答:甲独立预报3次,至少有2次预报准确的概率为0.896. ……… 13分

18.(本题满分13分)

解:(1)∵         …………………2分

         =  ……………6分

      ∴函数的最小正周期        …………………7分

       又由可得:

的单调递增区间形如:  ……9分

(2) ∵时,

 ∴的取值范围是              ………………11分

∴函数的最大值是3,最小值是0 

从而函数的是               …………13分

19.(本题满分12分)

解:(1) ∵   ∴由已知条件可得:,并且

解之得:                         ……………3分

   从而其首项和公比满足:  ………5分

   故数列的通项公式为: ……6分

(2) ∵  

     数列是等差数列,         …………………………8分

       =

       ==   …………………10分

    由于,当且仅当最大时,最大.

        所以当最大时,或6        …………………………12分

20.(本题满分12分)

解:(1) ∵为奇函数    ∴  ………2分

   ∵,导函数的最小值为-12 ∴……3分

 又∵直线的斜率为

并且的图象在点P处的切线与它垂直

,即    ∴       ……………6分

(2) 由第(1)小题结果可得:

                ……………9分

   令,得           ……………10分

   ∵

   ∴[-1, 3]的最大值为11,最小值为-16.  ………12分

21.(本题满分12分)

解:(1) ∵函数有意义的充要条件为

         ,即是  

 ∴函数的定义域为         …………3分

∵函数有意义的充要条件为:

∴函数的定义域为     …………5分

(2)∵由题目条件知

,                      …………………7分

c的取值范围是:[-5, 5]           …………………8分

(3) 即是

    ∵是奇函数,∴   ………………9分

又∵函数的定义域为,并且是增函数

    ………………11分

解之得的取值范围是:=  …………12分

22.(本题满分12分)

解:(1) 设双曲线的渐近线方程为,即

∵双曲线的渐近线与已知的圆相切,圆心到渐近线的距离等于半径

 ∴    

 ∴双曲线的渐近线的方程为:         ……………2分

又设双曲线的方程为:,则

 ∵双曲线的渐近线的方程为,且有一个焦点为

,          ………………4分

解之得:,故双曲线的方程是:  ……………5分

(2) 联立方程组,消去得:(*)…………6分

  ∵直线与双曲线C的左支交于两点,方程(*)两根为负数,

   …………8分

又∵线段PQ的中点坐标满足

      ……9分

∴直线的方程为:

即是

直线轴的截距     ……………………11分

又∵时,的取值范围是:

∴直线的截距的取值范围是……12分

 

 

 

 


同步练习册答案