题目列表(包括答案和解析)
已知函数
,
是
的一个零点,又
在
处有极值,在区间
和
上是单调的,且在这两个区间上的单调性相反.(1)求
的取值范围;(2)当
时,求使
成立的实数
的取值范围.
从而
或
即
或![]()
所以存在实数
,满足题目要求.……………………12分
(本题满分12分) 设函数
(
),
.
(1) 将函数
图象向右平移一个单位即可得到函数
的图象,试写出
的解析式及值域;
(2) 关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3) 对于函数
与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
.(本小题满分12分)对于函数
,若
,则称
为
的“不动点”,若
,则称
为
的“稳定点”.函数的“不动点”和“稳定点”的集合分别记为
和
,即
,
.
(1)求证:
;
(2)若
,且
,求实数
的取值范围;
(3)若
是
上的单调递增函数,
是函数的稳定点,问
是函数的不动点吗?若是,请证明你的结论;若不是,请说明的理由.
(本小题满分12分)
阅读下面内容,思考后做两道小题。
在一节数学课上,老师给出一道题,让同学们先解,题目是这样的:
已知函数f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范围。
题目给出后,同学们马上投入紧张的解答中,结果很快出来了,大家解出的结果有很多个,下面是其中甲、乙两个同学的解法:
甲同学的解法:由f(1)=k+b,f(-1)=-k+b得![]()
①+②得:0≤2b≤4,即0≤b≤2 ③
② ×(-1)+①得:-1≤k-b≤1 ④
④+②得:0≤2k≤4 ⑤
③+⑤得:0≤2k+b≤6。
又∵f(2)=2k+b
∴0≤f(2)≤6,0≤Z≤6
乙同学的解法是:由f(1)=k+b,f(-1)=-k+b得![]()
①+②得:0≤2b≤4,即:0≤b≤2 ③
①-②得:2≤2k≤2,即:1≤k≤1
∴k=1,
∵f(2)=2k+b=1+b
由③得:1≤f(2)≤3
∴:1≤Z≤3
(Ⅰ)如果课堂上老师让你对甲、乙两同学的解法给以评价,你如何评价?
(Ⅱ)请你利用线性规划方面的知识,再写出一种解法。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com