题目列表(包括答案和解析)
一支车队有15辆车,某天依次出发执行运输任务,第一辆车于下午2时出发,第二辆车于下午2时10分出发,第三辆车于下午2时20分出发,依此类推。假设所有的司机都连续开车,并都在下午6时停下来休息。
(1)到下午6时最后一辆车行驶了多长时间?
(2)如果每辆车的行驶速度都是60
,这个车队当天一共行驶了多少千米?
【解析】第一问中,利用第一辆车出发时间为下午2时,每隔10分钟即
小时出发一辆
则第15辆车在
小时,最后一辆车出发时间为:
小时
第15辆车行驶时间为:
小时(1时40分)
第二问中,设每辆车行驶的时间为:
,由题意得到
是以
为首项,
为公差的等差数列
则行驶的总时间为:![]()
则行驶的总里程为:
运用等差数列求和得到。
解:(1)第一辆车出发时间为下午2时,每隔10分钟即
小时出发一辆
则第15辆车在
小时,最后一辆车出发时间为:
小时
第15辆车行驶时间为:
小时(1时40分)
……5分
(2)设每辆车行驶的时间为:
,由题意得到
是以
为首项,
为公差的等差数列
则行驶的总时间为:
……10分
则行驶的总里程为:![]()
已知数列
是公差不为零的等差数列,
,且
、
、
成等比数列。
⑴求数列
的通项公式;
⑵设
,求数列
的前
项和
。
【解析】第一问中利用等差数列
的首项为
,公差为d,则依题意有:
![]()
第二问中,利用第一问的结论得到数列的通项公式,
,利用裂项求和的思想解决即可。
已知函数![]()
;
(1)若函数
在其定义域内为单调递增函数,求实数
的取值范围。
(2)若函数
,若在[1,e]上至少存在一个x的值使
成立,求实数
的取值范围。
【解析】第一问中,利用导数
,因为
在其定义域内的单调递增函数,所以
内满足
恒成立,得到结论第二问中,在[1,e]上至少存在一个x的值使
成立,等价于不等式
在[1,e]上有解,转换为不等式有解来解答即可。
解:(1)
,
因为
在其定义域内的单调递增函数,
所以
内满足
恒成立,即
恒成立,
亦即
,
即可 又![]()
当且仅当
,即x=1时取等号,
在其定义域内为单调增函数的实数k的取值范围是
.
(2)在[1,e]上至少存在一个x的值使
成立,等价于不等式
在[1,e]上有解,设![]()
上的增函数,
依题意需![]()
实数k的取值范围是![]()
已知
,函数![]()
(1)当
时,求函数
在点(1,
)的切线方程;
(2)求函数
在[-1,1]的极值;
(3)若在
上至少存在一个实数x0,使
>g(xo)成立,求正实数
的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中
,那么当
时,
又
所以函数
在点(1,
)的切线方程为
;(2)中令
有 ![]()
![]()
对a分类讨论
,和
得到极值。(3)中,设
,
,依题意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 当
时,
又
∴ 函数
在点(1,
)的切线方程为
--------4分
(Ⅱ)令
有 ![]()
![]()
①
当
即
时
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
极大值 |
|
极小值 |
|
故
的极大值是
,极小值是![]()
②
当
即
时,
在(-1,0)上递增,在(0,1)上递减,则
的极大值为
,无极小值。
综上所述
时,极大值为
,无极小值
时 极大值是
,极小值是
----------8分
(Ⅲ)设
,![]()
对
求导,得![]()
∵
,
![]()
∴
在区间
上为增函数,则![]()
依题意,只需
,即
解得
或
(舍去)
则正实数
的取值范围是(![]()
,
)
如图,
,
,…,
,…是曲线
上的点,
,
,…,
,…是
轴正半轴上的点,且
,
,…,
,…
均为斜边在
轴上的等腰直角三角形(
为坐标原点).
(1)写出
、
和
之间的等量关系,以及
、
和
之间的等量关系;
(2)求证:
(
);
(3)设
,对所有
,
恒成立,求实数
的取值范围.
![]()
【解析】第一问利用有
,
得到
第二问证明:①当
时,可求得
,命题成立;②假设当
时,命题成立,即有
则当
时,由归纳假设及
,
得![]()
第三问
![]()
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
![]()
解:(1)依题意,有
,
,………………4分
(2)证明:①当
时,可求得
,命题成立;
……………2分
②假设当
时,命题成立,即有
,……………………1分
则当
时,由归纳假设及
,
得
.
即![]()
解得
(
不合题意,舍去)
即当
时,命题成立. …………………………………………4分
综上所述,对所有
,
. ……………………………1分
(3)
![]()
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
.……………2分
由题意,有![]()
.
所以,![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com