设G.则 查看更多

 

题目列表(包括答案和解析)

设f(x)是定义在D上的函数,若对任何实数α∈(0,1)以及x1、x2∈D恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)成立,则称f(x)为定义在D上的下凸函数.
(1)试判断函数g(x)=2x(x∈R),数学公式是否为各自定义域上的下凸函数,并说明理由;
(2)若h(x)=px2(x∈R)是下凸函数,求实数p的取值范围;
(3)已知f(x)是R上的下凸函数,m是给定的正整数,设f(0)=0,f(m)=2m,记Sf=f(1)+f(2)+f(3)+…+f(m),对于满足条件的任意函数f(x),试求Sf的最大值.

查看答案和解析>>

已知m>1,直线,椭圆C:分别为椭圆C的左、右焦点.

(Ⅰ)当直线过右焦点时,求直线的方程;

(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[

【解析】第一问中因为直线经过点,0),所以,得.又因为m>1,所以,故直线的方程为

第二问中设,由,消去x,得

则由,知<8,且有

由题意知O为的中点.由可知从而,设M是GH的中点,则M().

由题意可知,2|MO|<|GH|,得到范围

 

查看答案和解析>>

已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.
设函数g(x)=
4x+2
x+3
,h(x)=
ax+b
cx+d
(c≠0,ad-bc≠0,(d-a)2+4bc>0)

(1)求函数g(x)的不动点x1,x2
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
an-x1
an-x2
}
是等比数列,并求
lim
n→∞
an

(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.

查看答案和解析>>

已知函数f(x)=ax+bsinx,当数学公式时,f(x)取得极小值数学公式
(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记数学公式,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.
设函数g(x)=
4x+2
x+3
,h(x)=
ax+b
cx+d
(c≠0,ad-bc≠0,(d-a)2+4bc>0)

(1)求函数g(x)的不动点x1,x2
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
an-x1
an-x2
}
是等比数列,并求
lim
n→∞
an

(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.

查看答案和解析>>


同步练习册答案