所以所求的二面角的余弦为----14分 解法二:(I)同解法一 查看更多

 

题目列表(包括答案和解析)

为了了解某市工人开展体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂

(Ⅰ)从A,B,C区中分别抽取的工厂个数;

(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,计算这2个工厂中至少有1个来自A区的概率.

【解析】本试题主要考查了统计和概率的综合运用。

第一问工厂总数为18+27+18=63,样本容量与总体中的个体数比为7/63=1/9…3分

所以从A,B,C三个区中应分别抽取的工厂个数为2,3,2。

第二问设A1,A2为在A区中的抽得的2个工厂,B1,B2­,B3为在B区中抽得的3个工厂,

C1,C2为在C区中抽得的2个工厂。

这7个工厂中随机的抽取2个,全部的可能结果有1/2*7*6=32种。

随机的抽取的2个工厂至少有一个来自A区的结果有A1,A2),A1,B2),A1,B1),

A1,B3)A1,C2),A1,C1), …………9分

同理A2还能给合5种,一共有11种。  

所以所求的概率为p=11/21

 

查看答案和解析>>

如图,边长为2的正方形ABCD,E是BC的中点,沿AE,DE将折起,使得B与C重合于O.

(Ⅰ)设Q为AE的中点,证明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一问中,利用线线垂直,得到线面垂直,然后利用性质定理得到线线垂直。取AO中点M,连接MQ,DM,由题意可得:AOEO, DOEO,

AO=DO=2.AODM

因为Q为AE的中点,所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二问中,作MNAE,垂足为N,连接DN

因为AOEO, DOEO,EO平面AOD,所以EODM

,因为AODM ,DM平面AOE

因为MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中点M,连接MQ,DM,由题意可得:AOEO, DOEO,

AO=DO=2.AODM

因为Q为AE的中点,所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足为N,连接DN

因为AOEO, DOEO,EO平面AOD,所以EODM

,因为AODM ,DM平面AOE

因为MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值为

 

查看答案和解析>>

 两个盒内分别盛着写有0,1,2,3,4,5六个数字的六张卡片,若从每盒中各取一张,求所取两数之和等于6的概率,现有甲、乙两人分别给出的一种解法:

甲的解法:因为两数之和可有0,1,2,…,10共11种不同的结果,所以所求概率为

乙的解法:从每盒中各取一张卡片,共有36种取法,其中和为6的情况有5种:(1,5)、(5,1)、(2,4)、(4,2)、(3,3)因此所求概率为

试问哪一种解法正确?为什么?

 

查看答案和解析>>

 

如图,在四棱锥 中,底面 是边长为1的菱形, ,  底面 ,  , 为 的中点.

(Ⅰ)求异面直线AB与MD所成角的大小;

(Ⅱ)求平面 与平面 所成的二面角的余弦值.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

已知函数f(x)=4x3-3x2cosθ+
316
cosθ
,其中x∈R,θ为参数,且0≤θ≤2π.
(Ⅰ)当cosθ=0时,判断函数f(x)是否有极值;
(Ⅱ)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(Ⅲ)若对(2)中所求的取值范围内的任意参数θ,函数f(x)在区间(2a-1,a)内都是增函数,求实数a的取值范围.

查看答案和解析>>


同步练习册答案