(2)试证明.(其中e为自然对数的底数) 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,有f(x)=ax+lnx(其中e为自然对数的底,a∈R).
(1)求函数f(x)的解析式;
(2)设g(x)=
ln|x|
|x|
,x∈[-e,0)∪(0,e],求证:当a=-1时,|f(x)|>g(x)+
1
2

(3)试问:是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是3?如果存在,求出实数a的值;如果不存在,请说明理由.

查看答案和解析>>

已知a∈R,f(x)=(ax2-2x)e-x,其中e为自然对数的底数.
(1)当a≥0时,求函数f(x)的极值点;
(2)若f(x)在[-1,1]上是单调函数,求a的取值范围;
(3)设n∈N*,试证明e
n(n+1)2
≥n!en
,这里n!=1×2×…×n.

查看答案和解析>>

已知a∈R,f(x)=(ax2-2x)e-x,其中e为自然对数的底数.
(1)当a≥0时,求函数f(x)的极值点;
(2)若f(x)在[-1,1]上是单调函数,求a的取值范围;
(3)设n∈N*,试证明数学公式,这里n!=1×2×…×n.

查看答案和解析>>

已知a∈R,f(x)=(ax2-2x)e-x,其中e为自然对数的底数.
(1)当a≥0时,求函数f(x)的极值点;
(2)若f(x)在[-1,1]上是单调函数,求a的取值范围;
(3)设n∈N*,试证明,这里n!=1×2×…×n.

查看答案和解析>>

定义在(0,+∞)的函数f(x)=
xe-x2+ax,x∈(0,1)
2x-1,x∈[1,+∞)
,其中e=2.71828…是自然对数的底数,a∈R.
(1)若函数f(x)在点x=1处连续,求a的值;
(2)若函数f(x)为(0,1)上的单调函数,求实数a的取值范围,并判断此时函数f(x)在(0,+∞)上是否为单调函数;
(3)当x∈(0,1)时,记g(x)=lnf(x)+x2-ax,试证明:对n∈N*,当n≥2时,有-
n(n-1)
2
≤g(
1
n!
)<
n
k=1
1
k
-n

查看答案和解析>>


同步练习册答案