方程组两边相加.即得 查看更多

 

题目列表(包括答案和解析)

.在求某些函数的导数时,可以先在解析式两边取对数,再求导数,这比用一般方法求导数更为简单,如求的导数,可先在两边取对数,得,再在两边分别对x求导数,得即为,即导数为。若根据上面提供的方法计算函数的导数,则 _        

 

查看答案和解析>>

已知,(其中

⑴求

⑵试比较的大小,并说明理由.

【解析】第一问中取,则;                         …………1分

对等式两边求导,得

,则得到结论

第二问中,要比较的大小,即比较:的大小,归纳猜想可得结论当时,

时,

时,

猜想:当时,运用数学归纳法证明即可。

解:⑴取,则;                         …………1分

对等式两边求导,得

,则。       …………4分

⑵要比较的大小,即比较:的大小,

时,

时,

时,;                              …………6分

猜想:当时,,下面用数学归纳法证明:

由上述过程可知,时结论成立,

假设当时结论成立,即

时,

时结论也成立,

∴当时,成立。                          …………11分

综上得,当时,

时,

时, 

 

查看答案和解析>>

已知圆C1:x2+y2+2x-6y+1=0,圆C2:x2+y2-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长.

活动:学生审题,思考并交流,探讨解题的思路,教师及时提示引导,因两圆的交点坐标同时满足两个圆方程,联立方程组,消去x2项、y2项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.

查看答案和解析>>

请先阅读:
在等式cos2x=2cos2x-1(x∈R)的两边求导,得:(cos2x)′=(2cos2x-1)′,由求导法则,得(-sin2x)•2=4cosx•(-sinx),化简得等式:sin2x=2cosx•sinx.
(1)利用上题的想法(或其他方法),结合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整数n≥2),证明:n[(1+x)n-1-1]=
n
k=2
k
C
k
n
xk-1

(2)对于正整数n≥3,求证:
(i)
n
k=1
(-1)kk
C
k
n
=0

(ii)
n
k=1
(-1)kk2
C
k
n
=0

(iii)
n
k=1
1
k+1
C
k
n
=
2n+1-1
n+1

查看答案和解析>>

设代数方程a0-a1x2+a2x4-…+(-1)nanx2n=0有2n个不同的根±x1,±x2,…,±xn,则a0-a1x2+a2x4-…+(-1)nanx2n=a0(1-
x2
x
2
1
)(1-
x2
x
2
2
)•…•(1-
x2
x
2
n
)
,比较两边x2的系数得a1=
a0(
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
)
a0(
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
)
(用a0•x1•x2•…•xn表示);若已知展开式
sinx
x
=1-
x2
3!
+
x4
5!
-
x6
7!
+…
对x∈R,x≠0成立,则由于
sinx
x
=0
有无穷多个根:±π,±2π,…,+±nπ,…,于是1-
x2
3!
+
x4
5!
-
x6
7!
+…=(1-
x2
π2
)(1-
x2
22π2
)•…•(1-
x2
n2π2
)•…
,利用上述结论可得1+
1
22
+
1
32
+…+
1
n2
+…
=
π2
6
π2
6

查看答案和解析>>


同步练习册答案