题目列表(包括答案和解析)
(本小题10分)在计算“
的和”时,某同学设计了一种很巧妙的方法(裂项法):先把第
项改写成:
,于是得到
,
, ,![]()
把以上
个等式相加得到和为
,根据上述裂项法,请你计算“
的和”
已知等差数列{an}的首项为4,公差为4,其前n项和为Sn,则数列 {
}的前n项和为( )
|
| A. |
| B. |
| C. |
| D. |
|
| 考点: | 数列的求和;等差数列的性质. |
| 专题: | 等差数列与等比数列. |
| 分析: | 利用等差数列的前n项和即可得出Sn,再利用“裂项求和”即可得出数列 { |
| 解答: | 解:∵Sn=4n+ ∴ ∴数列 { 故选A. |
| 点评: | 熟练掌握等差数列的前n项和公式、“裂项求和”是解题的关键. |
| 1 |
| an2-1 |
| 1 |
| 等差×等差 |
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 99×100 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 99 |
| 1 |
| 100 |
| 99 |
| 200 |
| n |
| i=0 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com