结合①②可得.. ---------12分 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

为了解某班学生喜欢打篮球是否与性别有关,对该班50人进行了问卷调查得到了如下的列联表:

 

喜欢打篮球

不喜欢打篮球

合 计

男 生

 

5

 

女 生

10

 

 

合 计

 

 

50

已知在全部50人中随机抽取1人抽到喜欢打篮球的学生的概率为0.6。

(Ⅰ)请将上面的列联表补充完整;

(Ⅱ)是否有99%的把握认为喜欢打篮球与性别有关?说明你的理由;

(Ⅲ)已知不喜欢打篮球的5位男生中,喜欢踢足球,喜欢打羽毛球,喜欢打乒乓球,现在从这5位男生中选取3位进行其他方面的调查,求不全被选中的概率。

附:1.

2.在统计中,用以下结果对变量的独立性进行判断:

(1)当时,没有充分的证据判定变量有关联,可以认为变量是没有关联的;

(2)当时,有90%的把握判定变量有关联;

(3)当时,有95%的把握判定变量有关联;

(4)当时,有99%的把握判定变量有关联。

 

 

 

 

 

查看答案和解析>>

(本小题满分12分)

为了解某班学生喜欢打篮球是否与性别有关,对该班50人进行了问卷调查得到了如下的列联表:

 

喜欢打篮球

不喜欢打篮球

合 计

男 生

 

5

 

女 生

10

 

 

合 计

 

 

50

已知在全部50人中随机抽取1人抽到喜欢打篮球的学生的概率为0.6。

(Ⅰ)请将上面的列联表补充完整;

(Ⅱ)是否有99%的把握认为喜欢打篮球与性别有关?说明你的理由;

(Ⅲ)已知不喜欢打篮球的5位男生中,喜欢踢足球,喜欢打羽毛球,喜欢打乒乓球,现在从这5位男生中选取3位进行其他方面的调查,求不全被选中的概率。

附:1.

2.在统计中,用以下结果对变量的独立性进行判断:

(1)当时,没有充分的证据判定变量有关联,可以认为变量是没有关联的;

(2)当时,有90%的把握判定变量有关联;

(3)当时,有95%的把握判定变量有关联;

(4)当时,有99%的把握判定变量有关联。

 

 

 

 

 

查看答案和解析>>

在一次数学测验后,班级学委对选答题的选题情况进行统计,如下表:
平面几何选讲 极坐标与参数方程 不等式选讲 合计
男同学(人数) 12 4 6 22
女同学(人数) 0 8 12 20
合计 12 12 18 42
(1)在统计结果中,如果把平面几何选讲和极坐标与参数方程称为几何类,把不等式选讲称为代数类,我们可以得到如下2×2列联表:
几何类 代数类 合计
男同学(人数) 16 6 22
女同学(人数) 8 12 20
合计 24 18 42
据此统计你是否认为选做“几何类”或“代数类”与性别有关,若有关,你有多大的把握?
(2)在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知这名学委和两名数学科代表都在选做“不等式选讲”的同学中.
①求在这名学委被选中的条件下,两名数学科代表也被选中的概率;
②记抽取到数学科代表的人数为X,求X的分布列及数学期望E(X).
下面临界值表仅供参考:
P(x2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

(2013•沈阳二模)在一次数学测验后,班级学委对选答题的选题情况进行统计,如下表:
平面几何选讲 极坐标与参数方程 不等式选讲 合计
男同学(人数) 12 4 6 22
女同学(人数) 0 8 12 20
合计 12 12 18 42
(1)在统计结果中,如果把平面几何选讲和极坐标与参数方程称为几何类,把不等式选讲称为代数类,我们可以得到如下2×2列联表:
几何类 代数类 合计
男同学(人数) 16 6 22
女同学(人数) 8 12 20
合计 24 18 42
据此统计你是否认为选做“几何类”或“代数类”与性别有关,若有关,你有多大的把握?
(2)在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知这名学委和两名数学科代表都在选做“不等式选讲”的同学中.
①求在这名学委被选中的条件下,两名数学科代表也被选中的概率;
②记抽取到数学科代表的人数为X,求X的分布列及数学期望E(X).
下面临界值表仅供参考:
P(x2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

我国部分地区SARS流行,党和政府采取果断措施,防治结合,很快使病情得到控制.下表是某同学记载的5月1日至5月12日每天北京市SARS病患者.治愈者的数据,以及根据这些数据绘制出的散点图.

日期

5.1

5.2

5.3

5.4

5.5

5.6

人数

100

109

115

118

121

134

日期

5.7

5.8

5.9

5.10

5.11

5.12

人数

141

152

168

175

186

203

下列说法:

①根据此散点图,可以判断日期与人数具有线性相关关系;

②若日期与人数具有线性相关关系,则相关系数r与临界值r0.05应满足|r|>r0.05

③根据此散点图,可以判断日期与人数具有一次函数关系. 其中正确的个数为(    )

A.0                    B.1                C.2                D.3

查看答案和解析>>


同步练习册答案