所以.当游戏终止时.总取球次数不多于3的概率为--14分 查看更多

 

题目列表(包括答案和解析)

一个不透明的口袋内装有材质、重量、大小相同的7个小球,且每个小球的球面上要么只写有数字“2010”,要么只写有文字“世博会”.假定每个小球每一次被取出的机会都相同,又知从中摸出2个球都写着“世博会”的概率是
17
.现甲、乙两个小朋友做游戏,方法是:不放回从口袋中轮流摸取一个球,甲先取、乙后取,然后甲再取,直到两个小朋友中有一人取得写着文字“世博会”的球时游戏终止.
(1)求该口袋内装有写着数字“2010”的球的个数;
(2)求当游戏终止时总球次数ξ的概率分布列和期望Eξ.

查看答案和解析>>

一个不透明的口袋内装有材质、重量、大小相同的7个小球,且每个小球的球面上要么只写有数字“08”,要么只写有文字“奥运”.假定每个小球每一次被取出的机会都相同,又知从中摸出2个球都写着“奥运”的概率是。现甲、乙两个小朋友做游戏,方法是:不放回从口袋中轮流摸取一个球,甲先取、乙后取,然后甲再取,直到两个小朋友中有1人取得写着文字“奥运”的球时游戏终止,每个球在每一次被取出的机会均相同.

(1)求该口袋内装有写着数字“08”的球的个数;

(2)求当游戏终止时总球次数不多于3的概率.

查看答案和解析>>

(本小题满分12分)一个袋中有8个大小相同的小球,其中红球1个,白球和黑球若干,现从袋中有放回地取球,每次随机取一个,又知连续取两次都是白球的概率为

(1)求该口袋内白球和黑球的个数;

(2)若取一个红球记2分,取一个白球记1分,取一个黑球记0 分,连续取三次分数之和为4分的概率;

(3)现甲、乙两个小朋友做游戏,方法是:不放回从口袋中轮流摸取一个球,甲先取、乙后取,然后甲再取,直到两个小朋友中有1人取得黑球时游戏终止,每个球在每一次被取出的机会均相同.求当游戏终止时,取球次数不多于3的概率。

查看答案和解析>>

一个不透明的口袋内装有材质、重量、大小相同的7个小球,且每个小球的球面上要么只写有数字“2010”,要么只写有文字“世博会”.假定每个小球每一次被取出的机会都相同,又知从中摸出2个球都写着“世博会”的概率是数学公式.现甲、乙两个小朋友做游戏,方法是:不放回从口袋中轮流摸取一个球,甲先取、乙后取,然后甲再取,直到两个小朋友中有一人取得写着文字“世博会”的球时游戏终止.
(1)求该口袋内装有写着数字“2010”的球的个数;
(2)求当游戏终止时总球次数ξ的概率分布列和期望Eξ.

查看答案和解析>>

一个不透明的口袋内装有材质、重量、大小相同的7个小球,且每个小球的球面上要么只写有数字“2010”,要么只写有文字“世博会”.假定每个小球每一次被取出的机会都相同,又知从中摸出2个球都写着“世博会”的概率是.现甲、乙两个小朋友做游戏,方法是:不放回从口袋中轮流摸取一个球,甲先取、乙后取,然后甲再取,直到两个小朋友中有一人取得写着文字“世博会”的球时游戏终止.
(1)求该口袋内装有写着数字“2010”的球的个数;
(2)求当游戏终止时总球次数ξ的概率分布列和期望Eξ.

查看答案和解析>>


同步练习册答案