由正弦定理:得. 查看更多

 

题目列表(包括答案和解析)

如图, 是边长为的正方形,平面与平面所成角为.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)线段上是否存在点,使得平面?若存在,试确定点的位置;若不存在,说明理由。

 

查看答案和解析>>

如图, 是边长为的正方形,平面与平面所成角为.

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)线段上是否存在点,使得平面?若存在,试确定点的位置;若不存在,说明理由。

查看答案和解析>>

如图, 是边长为的正方形,平面与平面所成角为.

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)线段上是否存在点,使得平面?若存在,试确定点的位置;若不存在,说明理由。

查看答案和解析>>

(08年沈阳二中四模理)(14分)已知点,点轴上,点轴的正半轴上,点在直线上,且满足,

(Ⅰ)当点轴上移动时,求点的轨迹

(Ⅱ)过定点作直线交轨迹两点,点关于坐标原点的对称点,求证:

(Ⅲ)在(Ⅱ)中,是否存在垂直于轴的直线被以为直径的圆截得的弦长恒为定值?若存在求出的方程;若不存在,请说明理由。

 

 

查看答案和解析>>

(08年沈阳二中四模理)(14分)已知点,点轴上,点轴的正半轴上,点在直线上,且满足,

(Ⅰ)当点轴上移动时,求点的轨迹

(Ⅱ)过定点作直线交轨迹两点,点关于坐标原点的对称点,求证:

(Ⅲ)在(Ⅱ)中,是否存在垂直于轴的直线被以为直径的圆截得的弦长恒为定值?若存在求出的方程;若不存在,请说明理由。

 

 

 

 

查看答案和解析>>


同步练习册答案