题目列表(包括答案和解析)
若二次函数y=f(x)的图象经过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围.
分析:要求f(-2)的取值范围,只需找到含人f(-2)的不等式(组).由于y=f(x)是二次函数,所以应先将f(x)的表达形式写出来.即可求得f(-2)的表达式,然后依题设条件列出含有f(-2)的不等式(组),即可求解.
已知过点
的动直线
与抛物线
相交于
两点.当直线
的斜率是
时,
.
(1)求抛物线
的方程;
(2)设线段
的中垂线在
轴上的截距为
,求
的取值范围.
【解析】(1)B
,C
,当直线
的斜率是
时,
的方程为
,即
(1’)
联立
得
,
(3’)
由已知
,
(4’)
由韦达定理可得
G方程为
(5’)
(2)设
:
,BC中点坐标为
(6’)
得
由
得
(8’)
![]()
BC中垂线为
(10’)
![]()
(11’)
![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com