题目列表(包括答案和解析)
在
中,已知
,面积
,
(1)求
的三边的长;
(2)设
是
(含边界)内的一点,
到三边
的距离分别是![]()
①写出
所满足的等量关系;
②利用线性规划相关知识求出
的取值范围.
【解析】第一问中利用设
中角
所对边分别为![]()
由
得![]()
![]()
又由
得
即
![]()
又由
得
即
![]()
又
又
得![]()
即
的三边长![]()
![]()
第二问中,①
得
![]()
故![]()
②![]()
令
依题意有![]()
作图,然后结合区域得到最值。
![]()
在
中,
是三角形的三内角,
是三内角对应的三边,已知
成等差数列,
成等比数列
(Ⅰ)求角
的大小;
(Ⅱ)若
,求
的值.
【解析】第一问中利用依题意
且
,故![]()
第二问中,由题意
又由余弦定理知
![]()
,得到
,所以
,从而得到结论。
(1)依题意
且
,故
……………………6分
(2)由题意
又由余弦定理知
…………………………9分
即
故![]()
代入
得![]()
![]()
已知数列
的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求
的通项公式;
(Ⅱ) 设
(
N*).
①证明:
;
② 求证:
.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用
关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以
利用放缩法,从此得到结论。
解:(Ⅰ)当
时,由
得
. ……2分
若存在
由
得
,
从而有
,与
矛盾,所以
.
从而由
得
得
. ……6分
(Ⅱ)①证明:![]()
证法一:∵
∴![]()
∴
∴
.…………10分
证法二:
,下同证法一.
……10分
证法三:(利用对偶式)设
,
,
则
.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当
时,
,命题成立;
②假设
时,命题成立,即
,
则当
时,![]()
![]()
即![]()
即![]()
故当
时,命题成立.
综上可知,对一切非零自然数
,不等式②成立. ………………10分
②由于
,
所以
,
从而
.
也即![]()
已知函数
(
为实数).
(Ⅰ)当
时,求
的最小值;
(Ⅱ)若
在
上是单调函数,求
的取值范围.
【解析】第一问中由题意可知:
. ∵
∴
∴![]()
.
当
时,
;
当
时,
. 故
.
第二问![]()
.
当
时,
,在
上有
,
递增,符合题意;
令
,则![]()
,∴
或
在
上恒成立.转化后解决最值即可。
解:(Ⅰ) 由题意可知:
. ∵
∴
∴![]()
.
当
时,
;
当
时,
. 故
.
(Ⅱ) ![]()
.
当
时,
,在
上有
,
递增,符合题意;
令
,则![]()
,∴
或
在
上恒成立.∵二次函数
的对称轴为
,且![]()
∴
或![]()
或![]()
或![]()
或
. 综上![]()
已知函数
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)设
,若对任意
,
,不等式
恒成立,求实数
的取值范围.
【解析】第一问利用
的定义域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是![]()
第二问中,若对任意
不等式
恒成立,问题等价于
只需研究最值即可。
解: (I)
的定义域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是
........4分
(II)若对任意
不等式
恒成立,
问题等价于
,
.........5分
由(I)可知,在
上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以
; ............6分
![]()
当b<1时,
;
当
时,
;
当b>2时,
;
............8分
问题等价于![]()
........11分
解得b<1 或
或
即
,所以实数b的取值范围是
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com