题目列表(包括答案和解析)
已知
,(其中
)
⑴求
及
;
⑵试比较
与
的大小,并说明理由.
【解析】第一问中取
,则
;
…………1分
对等式两边求导,得![]()
取
,则
得到结论
第二问中,要比较
与
的大小,即比较:
与
的大小,归纳猜想可得结论当
时,
;
当
时,
;
当
时,
;
猜想:当
时,
运用数学归纳法证明即可。
解:⑴取
,则
;
…………1分
对等式两边求导,得
,
取
,则
。 …………4分
⑵要比较
与
的大小,即比较:
与
的大小,
当
时,
;
当
时,
;
当
时,
;
…………6分
猜想:当
时,
,下面用数学归纳法证明:
由上述过程可知,
时结论成立,
假设当
时结论成立,即
,
当
时,![]()
而![]()
∴![]()
即
时结论也成立,
∴当
时,
成立。
…………11分
综上得,当
时,
;
当
时,
;
当
时,
在数列
中,
记![]()
(Ⅰ)求
、
、
、
并推测
;
(Ⅱ)用数学归纳法证明你的结论.
【解析】第一问利用递推关系可知,
、
、
、
,猜想可得![]()
第二问中,①当
时,
=
,又
,猜想正确
②假设当
时猜想成立,即
,
当
时,
=![]()
=
,即当
时猜想也成立
两步骤得到。
(2)①当
时,
=
,又
,猜想正确
②假设当
时猜想成立,即
,
当
时,
=![]()
=
,即当
时猜想也成立
由①②可知,对于任何正整数
都有
成立
数列
,满足![]()
(1)求
,并猜想通项公式
。
(2)用数学归纳法证明(1)中的猜想。
【解析】本试题主要考查了数列的通项公式求解,并用数学归纳法加以证明。第一问利用递推关系式得到
,
,
,
,并猜想通项公式![]()
第二问中,用数学归纳法证明(1)中的猜想。
①对n=1,
等式成立。
②假设n=k
时,
成立,
那么当n=k+1时,![]()
,所以当n=k+1时结论成立可证。
数列
,满足![]()
(1)
,
,
,
并猜想通项公
。 …4分
(2)用数学归纳法证明(1)中的猜想。①对n=1,
等式成立。 …5分
②假设n=k
时,
成立,
那么当n=k+1时,![]()
,
……9分
所以![]()
![]()
所以当n=k+1时结论成立 ……11分
由①②知,猜想对一切自然数n
均成立
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com