11.在△OAB中.O为坐标原点..其中.则当△OAB的面积达到最小时.θ的值 查看更多

 

题目列表(包括答案和解析)

在△OAB中,O为坐标原点,,其中,则当△OAB

的面积达到最小时,θ的值

[  ]

A.

B.

C.

D.

查看答案和解析>>

在△OAB中,O为坐标原点,,其中,则当△OAB的面积达到最小值时,θ的值

[  ]

A.

B.

C.

D.

查看答案和解析>>

在以O为原点的平面直角坐标系中,有点A(4,-3).已知△OAB是直角三角形,∠A=90°,且|AB|=2|OA|,其中点B的纵坐标大于零.

(1)求点B的坐标;

(2)求圆x2-6x+y2+2y=0关于直线OB对称的圆的方程.

查看答案和解析>>

已知函数.其中

   (Ⅰ)若函数的图像的一个公共点恰好在x轴上,求的值;

   (Ⅱ)若函数图像相交于不同的两点ABO为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的的值;如果没有,请说明理由.

   (Ⅲ)若是方程的两根,且满足,证明:当时,

查看答案和解析>>

已知函数.其中

   (Ⅰ)若函数的图像的一个公共点恰好在x轴上,求的值;

   (Ⅱ)若函数图像相交于不同的两点A、BO为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的的值;如果没有,请说明理由.

   (Ⅲ)若是方程的两根,且满足,证明:当时,

查看答案和解析>>

一、选择题:

1―5:ACCCB  6―10:CDACD   11―12:BC  

二、填空题:

13.2  14.   15.5   16.①   ②球的体积函数的导数等于球的表面积函数

三、解答题:

17.(本小题满分12分)

解:(I)……………………2分

……………………4分

       ……………………………………………………………………5分

   (II)B均为锐角且B<A

    又C为钝角

    ∴最短边为b……………………………………………………7分

    由,解得………………………………9分

    又…………………………12分

18.(本小题满分12分)

       解:(I)

………………………………3分

…………………………………………………4分

   (II)令.

    若时,当时,函数

    …………………………………………………………6分

    若时,当时,函数

    …………………………………………………………8分

   (III)由

    确定单调递增的正值区间是

    由

    确定单调递减的正值区间是;………10分

    综上,当时,函数的单调递增区间为.

    当时,函数的单调递增区间为.……12分

       注:①

     的这些

等价形式中,以最好用. 因为复合函数

的中间变量是增函数,对求的单调区间来说,

只看外层函数的单调性即可.否则,利用的其它形

式,例如求单调区间是非常容易出错的. 同学们可以尝试做一

的其它形式,认真体会,比较优劣!

       ②今后遇到求类似的单调区间问题,应首先通过诱导公式将转化为标准形

式:(其中A>0,ω>0),然后再行求

解,保险系数就大了.

19.(本小题满分12分)

       解:(I)由已知……………………1分

    …………3分

由已知

∴公差d=1…………………………………………………………4分

……………………………………………………6分

   (II)设…………………………7分

    当时,k的增函数,也是k的增函数.

    ………………………………10分

    又

    *不存在,使…………………………………12分

20.(本小题满分12分)

解:恒成立

只需小于的最小值…………………………………………2分

而当时,≥3……………………………………………4分

……………………………………………………6分

存在极大值与极小值

有两个不等的实根…………………………8分

…………………………………………………………10分

要使“PQ”为真,只需

故m的取值范围为[2,6].…………………………………………………12分

21.(本小题满分12分)

解:设此工厂应分别生产甲、乙两种产品x吨、y吨,获得利润z万元………1分

       依题意可得约束条件:

 

       利润目标函数…………(7分)                            

如图,作出可行域,作直线,把直线l向右上方平移至l1位置,直线经过可行域上的点M,且与原点距离最大,此时取最大值.…………10分

       解方程组,得M(20,24)

故生产甲种产品20t,乙种产品24 t,才能使此工厂获得最大利润.…………12分

22.(本小题满分14分)

解:(Ⅰ)依题意

      =5n-4    ……………………3分

(Ⅱ)(1)由

即 

    ……………………6分

即      

是以为首项,为公差的等差数列  ………………8分

(2)由(1)得

    ………………10分

       ①

∴2  ②

①-②得  

               =

  ………………14分