(I)求动点的轨迹的方程, 查看更多

 

题目列表(包括答案和解析)

动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.
(I)求动点M的轨迹C的方程;
(II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由.

查看答案和解析>>

设动点的坐标为x),向量,且=8.

   (I)求动点的轨迹的方程;

   (Ⅱ)过点作直线与曲线交于两点,若为坐标原点),是否存在直线,使得四边形为矩形,若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.
(I)求动点M的轨迹C的方程;
(II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由.

查看答案和解析>>

动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.
(I)求动点M的轨迹C的方程;
(II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由.

查看答案和解析>>

(理)已知平面内动点P(x,y)到定点F(
5
,0)
与定直线l:x=
4
5
的距离之比是常数
5
2

( I)求动点P的轨迹C及其方程;
( II)求过点Q(2,1)且与曲线C有且仅有一个公共点的直线方程.

查看答案和解析>>

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

题号

1

2

3

4

5

6

7

8

9

10

答案

B

B

D

D

C

A

C

B

A

C

二、填空题:本大题共6小题,每小题4分,共24分。把答案填在题中横线上。

11.13     12.       13.2     14.4       15.      16.1005

三、解答题:本大题共6小题,共78分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

解(I)

      

  (Ⅱ)由

       

18.(本小题满分12分)

解(I)记事件A;射手甲剩下3颗子弹,

      

   (Ⅱ)记事件甲命中1次10环,乙命中两次10环,事件;甲命中2次10环,乙命中1次10环,则四次射击中恰有三次命中10环为事件

(Ⅲ)的取值分别为16,17,18,19,20,

     

19.(本小题满分12分)

解法一:

(I)设的中点,连结

  的中点,的中点,

==(//)==(//)

==(//)

   

(Ⅱ)

 

(Ⅲ)过点作垂线,垂足为,连结

   

解法二:

分别以所在直线为坐标轴建立空间直角坐标系,

(I)

     

 (Ⅱ)设平面的一个法向量为

      

(Ⅲ)平面的一个法向量为

     

 

20.(本小题满分12分)

   (1)由

        切线的斜率切点坐标(2,5+

        所求切线方程为

   (2)若函数为上单调增函数,

        则上恒成立,即不等式上恒成立

        也即上恒成立。

        令上述问题等价于

        而为在上的减函数,

        则于是为所求

21.(本小题满分14分)

解(I)设

       

 (Ⅱ)(1)当直线的斜率不存在时,方程为

      

      

  (2)当直线的斜率存在时,设直线的方程为

       设

      ,得

      

      

      

              

22.(本小题满分14分)

解(I)由题意,令

      

 (Ⅱ)

      

  (1)当时,成立:

  (2)假设当时命题成立,即

       当时,

      

 


同步练习册答案