已知数列满足. 查看更多

 

题目列表(包括答案和解析)

已知数列满足a1=1,an+1=2an+1(n∈N*)
(1)求证:数列{an+1}是等比数列;
(2)求{an}的通项公式.

查看答案和解析>>

已知数列满足关系:

(1)求证:数列是等比数列;

(2)证明:

(3)设是数列的前n项和,当时,是否有确定的大小关系?若有,加以证明;若没有,请说明理由。

查看答案和解析>>

已知数列满足:________;=_________.

查看答案和解析>>

(13分)已知数列满足:

  (1)求的通项公式;

  (2)数列满足:,那么是否存在正整数,使恒成立,若

存在求出的最小值,若不存在请说明理由. 

查看答案和解析>>

(13分)已知数列满足:其中,数列满足:

   (1)求

   (2)求数列的通项公式;

   (3)是否存在正数k,使得数列的每一项均为整数,如果不存在,说明理由,如果存在,求出所有的k.

查看答案和解析>>

1-12  BDBDA    BABCABD

13.?2

14.2n1-n-2

15.7

16.90

17.(1)∵.

(2)证明:由已知

.

18.(1)由,当时,,显然满足

∴数列是公差为4的递增等差数列.

(2)设抽取的是第项,则.

,∴

.

故数列共有39项,抽取的是第20项.

19.

①+②得

20.(1)由条件得: .

(2)假设存在使成立,则    对一切正整数恒成立.

, 既.

故存在常数使得对于时,都有恒成立.

21.(1)第1年投入800万元,第2年投入800×(1-)万元……,

n年投入800×(1-n1万元,

所以总投入an=800+800(1-)+……+800×(1-n1=4000[1-(n

同理:第1年收入400万元,第2年收入400×(1+)万元,……,

n年收入400×(1+n1万元

bn=400+400×(1+)+……+400×(1+n1=1600×[(n-1]

(2)∴bnan>0,1600[(n-1]-4000×[1-(n]>0

化简得,5×(n+2×(n-7>0

x=(n,5x2-7x+2>0

xx>1(舍),即(nn≥5.

22.(文)

(1)当时,

,即

.

(1)

(2)

由(1)得

成立

故所得数列不符合题意.

.

综上,共有3个满足条件的无穷等差数列:

①{an} : an=0,即0,0,0,…;

②{an} : an=1,即1,1,1,…;

③{an} : an=2n-1,即1,3,5,…,

(理)

(1)由已知得:

.

(2)由,∴

,  ∴是等比数列.

,∴

 ,当时,

.

.