题目列表(包括答案和解析)
(本题12分)已知数列{an}中,a1=0,a2 =4,且an+2-3an+1+2an= 2n+1(
),
数列{bn}满足bn=an+1-2an.
(Ⅰ)求证:数列{
-
}是等比数列;
(Ⅱ)求数列{
}的通项公式;
(Ⅲ)求
.
(本题12分)已知数列{an}中,a1=0,a2
=4,且an+2-3an+1+2an= 2n+1(
),
数列{bn}满足bn=an+1-2an.
(Ⅰ)求证:数列{
-
}是等比数列;
(Ⅱ)求数列{
}的通项公式;
(Ⅲ)求
.
(本题满分12分) 已知数列{an}的前项和为Sn,且满足a1=1,2Sn=nan+1(1)求an; (2)设bn= ,求b1+b2+…+bn
(本题满分12分)
已知各项均为正数的数列{an}满足2a2n+1+3an+1an-2a2n=0(n![]()
)且a3+
是a2,a4的等差中项,数列{bn}的前n项和Sn=n2
(1)求数列{an}与{bn}的通项公式;
(2)若Tn=
,求证:Tn<![]()
(3)若cn=-
,T/n=c1+c2+…+cn,求使T/n+n
2n+1>125成立的正整数n的最小值
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com