题目列表(包括答案和解析)
设
,
.
(1)当
时,求曲线
在
处的切线方程;
(2)如果存在
,使得
成立,求满足上述条件的最大整数
;
(3)如果对任意的
,都有
成立,求实数
的取值范围.
【解析】(1)求出切点坐标和切线斜率,写出切线方程;(2)存在
,
转化
解决;(3)任意的
,都有
成立即
恒成立,等价于
恒成立
已知函数
,
是
的一个零点,又
在
处有极值,在区间
和
上是单调的,且在这两个区间上的单调性相反.(1)求
的取值范围;(2)当
时,求使
成立的实数
的取值范围.
从而
或
即
或![]()
所以存在实数
,满足题目要求.……………………12分
已知数列
是各项均不为0的等差数列,公差为d,
为其前n项和,且满足
,
.数列
满足
,
,
为数列
的前n项和.
(1)求数列
的通项公式
和数列
的前n项和
;
(2)若对任意的
,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数![]()
,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
【解析】第一问利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
时,
满足
,![]()
,
![]()
第二问,①当n为偶数时,要使不等式
恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式
恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
第三问
,
若
成等比数列,则
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
时,
满足
,![]()
,
.
(2)①当n为偶数时,要使不等式
恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式
恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
综合①、②可得
的取值范围是
.
(3)
,
若
成等比数列,则
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此时n=12.
因此,当且仅当m=2,
n=12时,数列
中的
成等比数列
已知
,函数![]()
(1)当
时,求函数
在点(1,
)的切线方程;
(2)求函数
在[-1,1]的极值;
(3)若在
上至少存在一个实数x0,使
>g(xo)成立,求正实数
的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中
,那么当
时,
又
所以函数
在点(1,
)的切线方程为
;(2)中令
有 ![]()
![]()
对a分类讨论
,和
得到极值。(3)中,设
,
,依题意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 当
时,
又
∴ 函数
在点(1,
)的切线方程为
--------4分
(Ⅱ)令
有 ![]()
![]()
①
当
即
时
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
极大值 |
|
极小值 |
|
故
的极大值是
,极小值是![]()
②
当
即
时,
在(-1,0)上递增,在(0,1)上递减,则
的极大值为
,无极小值。
综上所述
时,极大值为
,无极小值
时 极大值是
,极小值是
----------8分
(Ⅲ)设
,![]()
对
求导,得![]()
∵
,
![]()
∴
在区间
上为增函数,则![]()
依题意,只需
,即
解得
或
(舍去)
则正实数
的取值范围是(![]()
,
)
已知函数![]()
;
(1)若函数
在其定义域内为单调递增函数,求实数
的取值范围。
(2)若函数
,若在[1,e]上至少存在一个x的值使
成立,求实数
的取值范围。
【解析】第一问中,利用导数
,因为
在其定义域内的单调递增函数,所以
内满足
恒成立,得到结论第二问中,在[1,e]上至少存在一个x的值使
成立,等价于不等式
在[1,e]上有解,转换为不等式有解来解答即可。
解:(1)
,
因为
在其定义域内的单调递增函数,
所以
内满足
恒成立,即
恒成立,
亦即
,
即可 又![]()
当且仅当
,即x=1时取等号,
在其定义域内为单调增函数的实数k的取值范围是
.
(2)在[1,e]上至少存在一个x的值使
成立,等价于不等式
在[1,e]上有解,设![]()
上的增函数,
依题意需![]()
实数k的取值范围是![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com