那么.PH与直线BC的交点坐标为. 查看更多

 

题目列表(包括答案和解析)

如图,在△ABC中,∠C=90°,D是边BC上一点,且∠ADC=60°,那么下列说法中错误的是(  )

查看答案和解析>>

(1)如图所示,BD,CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F,G,连接FG,延长AF,AG,与直线BC分别交于点M、N,那么线段FG与△ABC的周长之间存在的数量关系是什么?
即:FG=
 
(AB+BC+AC)
(直接写出结果即可)
精英家教网
(2)如图,若BD,CE分别是△ABC的内角平分线;其他条件不变,线段FG与△ABC三边之间又有怎样的数量关系?请写出你的猜想,并给予证明.
精英家教网
(3)如图,若BD为△ABC的内角平分线,CE为△ABC的外角平分线,其他条件不变,线段FG与△ABC三边又有怎样的数量关系?直接写出你的猜想即可.不需要证明.答:线段FG与△ABC三边之间数量关系是
 

精英家教网

查看答案和解析>>

精英家教网如图,在△ABC中,∠ABC=30°,AB=10,那么以A为圆心,6为半径的⊙A与直线BC的位置关系是(  )
A、相交B、相切C、相离D、不能确定

查看答案和解析>>

如图1,二次函数y=ax2+bx+c(a≠0)的图像与x轴交于点A、点B,与y轴交于点C,且A、B两点的坐标分别是(4,0)、(0,-2),tan∠BCO=(1)求抛物线解析式;(2)点M为抛物线上一点,若以MB为直径的圆与直线BC相切于点B,求点M的坐标;(3) 如图2,若点P是抛物线上的动点,点Q是直线y=-x的动点,是否存在以点P、Q、C、O为顶点且以OC为一边的四边形是直角梯形;如果存在,请求出点P的坐标,如果不存在,请说明理由.

【解析】(1)利用A、B两点的坐标和tan∠BCO=求抛物线解析式

(2)设点m(x,y),则由以MB为直径的圆与直线BC相切于点B,说明了点B为直径的一个端点,另外,BC直线方程为y=2x+4,利用BM的中点就是圆心坐标,BM垂直于CB,因此联立方程组可得M的坐标

(3)假设存在以点P、Q、C、O为顶点且以OC为一边的四边形是直角梯形

则有几种情况的一种直角为C,直角为P,直角为O,直角为Q的情况,那么分情况讨论求解,利用一组对边平行,一个角为直角,进行求解

 

查看答案和解析>>

如图1,二次函数y=ax2+bx+c(a≠0)的图像与x轴交于点A、点B,与y轴交于点C,且A、B两点的坐标分别是(4,0)、(0,-2),tan∠BCO=(1)求抛物线解析式;(2)点M为抛物线上一点,若以MB为直径的圆与直线BC相切于点B,求点M的坐标;(3) 如图2,若点P是抛物线上的动点,点Q是直线y=-x的动点,是否存在以点P、Q、C、O为顶点且以OC为一边的四边形是直角梯形;如果存在,请求出点P的坐标,如果不存在,请说明理由.

【解析】(1)利用A、B两点的坐标和tan∠BCO=求抛物线解析式

(2)设点m(x,y),则由以MB为直径的圆与直线BC相切于点B,说明了点B为直径的一个端点,另外,BC直线方程为y=2x+4,利用BM的中点就是圆心坐标,BM垂直于CB,因此联立方程组可得M的坐标

(3)假设存在以点P、Q、C、O为顶点且以OC为一边的四边形是直角梯形

则有几种情况的一种直角为C,直角为P,直角为O,直角为Q的情况 ,那么分情况讨论求解,利用一组对边平行,一个角为直角,进行求解

 

查看答案和解析>>


同步练习册答案