(B)设 是直二面角.若直线m⊥.则m⊥ 查看更多

 

题目列表(包括答案和解析)

下列命题中,真命题是(  )

A.直线m、n都平行于平面,则m∥n
B.设是真二面角,若直线,则
C.设m、n是异面直线,若m∥平面,则n与相交
D.若直线m、n在平面内的射影依次是一个点和一条直线,且,则

查看答案和解析>>

在下列命题中,真命题是

[  ]
A.

设α-l-β是直二面角,若直线m⊥l,则m⊥β

B.

若直线m,n在平面α内的射影依次是一个点和一条直线,且m⊥n,则nα或n∥α

C.

直线m,n都平行于平面α,则m∥n

D.

设m,n是异面直线,若m∥平面α,则n与α相交

查看答案和解析>>

下列命题中,真命题是(     )

A.若直线m、n都平行于,则

B.设是直二面角,若直线

C.若在平面内的射影依次是一个点和一条直线,且,则

D.若直线m、n是异面直线,,则n与相交

 

查看答案和解析>>

下列命题中,真命题是(    )
A.若直线m、n都平行于,则
B.设是直二面角,若直线
C.若在平面内的射影依次是一个点和一条直线,且,则
D.若直线m、n是异面直线,,则n与相交

查看答案和解析>>

在下列命题中,真命题是(    )

A.若直线mn都平行于平面α,则mn

B.设αlβ是直二面角,若直线ml,则mβ

C.若直线mn在平面α内的射影依次是一个点和一条直线,且mn,则nα内或nα平行

D.设mn是异面直线,若m与平面α平行,则nα相交

查看答案和解析>>

 一、选择题

 

 

 

二.填空题

(13)         (14)10;         (15)180;           (16)① ③④

 三.解答题

(17)(本小题满分10分)

解 :

(Ⅰ)

函数 的单调增区间为

(Ⅱ)

 

 

 

 

 (18)(本小题满分12分)

解:(I)当

 (II)由(I)得

  

     

(19)(本小题满分12分)

解:依题意,第四项指标抽检合格的概率为 其它三项指标抽检合格的概率均为

    

    (I)若食品监管部门对其四项质量指标依次进行严格的检测,恰好在第三项指标检测结束

时,  能确定该食品不能上市的概率等于第一、第二项指标中恰有一项不合格而且第三项指标不合格的概率.

 

 

  (II)该品牌的食品能上市的概率等于四项指标都含格或第一、第二、第三项指标中仅有

一项不合格且第四项指标合格的概率.

 

(20)(本小题满分12分)

解法1:(I)取A1C1中点D,连结B1D,CD.

C1C=AlA=AlC, CD⊥AlCl

底面 ABC是边长为2的正三角形,

AB=BC=2,A1B1=BlCl=2,

B1D⊥AlCl

BlDCD=D,A1C1平面B1CD, A1C1B1C

(II) 面A1ACCl⊥底面ABC,面AlACC1⊥A1BlC1

又B1D⊥AlC1 BID⊥面A1CCl  

过点D作DE⊥A1C,连BlE,则BlE⊥AlC

B1ED为所求二面角的平面角  

 又A1A⊥A1C, C1C⊥A1C,又D是A1C1的中点,

     

  故所求二面角B1一A1C―C1的大小为arctan

解法2:(I)取AC中点O,连结BO,   ABC是正三角形 BO⊥AC    

又面 A1ACC1⊥底面ABC,BO⊥面A1ACC1 , BO⊥OA1

又AlA=A1CA1O⊥AC,如图建立空间直角坐标系O一xyz

(Ⅱ)为平面A1B1C的一个法向量,

 

故二面角B1-A1C-C1的大小为arccos

(21)(本小题满分12分)  。

  解:(I)曲线 在点( 0,)处的切线与 轴平行  

 

     (II)由c=0,方程 可化为

假没存在实数b使得此方程恰有一个实数根,

  此方程恰有一个实根

②若b>o,则  的变化情况如下

 

 

③若b<o,则  的变化情况如下

 

综合①②③可得,实数b的取值范围是

 

(22)解:, (Ⅰ)由题意设双曲线的标准方程为

由已知得

 

 双曲线G的标准方程为

(Ⅱ)

 

 

化简整理得,

www.ks5u.com

 


同步练习册答案