(12)已知函数. 的图象如图所示.那么 查看更多

 

题目列表(包括答案和解析)

7、已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是(  )

查看答案和解析>>

精英家教网已知函数f(x)=Asin(ωx+φ)的部分图象如图所示,那么函数f(x)的解析式可以是(  )
A、f(x)=sin(2x+
π
8
)
B、f(x)=
2
sin(2x-
π
8
)
C、f(x)=
2
sin(2x-
π
4
)
D、f(x)=
2
sin(2x+
π
4
)

查看答案和解析>>

已知函数f(x)的定义域[-1,5],部分对应值如表
x -1 0 4 5
f(x) 1 2 2 1
f(x)的导函数y=f′(x)的图象如图所示
下列关于函数f(x)的命题;
①函数f(x)的值域为[1,2];
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点.
其中真命题为
(填写序号)

查看答案和解析>>

已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示,给出关于f(x)的下列命题:
x -1 0 2 4 5
f(x) 1 2 0 2 1
①函数y=f(x)在x=2时,取极小值;
②函数f(x)在[0,1]是减函数,在[1,2]是增函数;
③当1<a<2时,函数y=f(x)-a有4个零点;
④如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最小值为0,
其中所有正确命题的个数是(  )

查看答案和解析>>

已知函数f(x)的定义域为[-1,5],部分对应值如下表.
x -1 0 2 4 5
f(x) 1 2 0 2 1
f(x)的导函数y=f′(x)的图象如图所示.下列关于函数f(x)的命题:
①函数f(x)在[0,1]上是减函数;
②如果当x∈[-1,t]时,f(x)最大值是2,那么t的最大值为4;
③函数y=f(x)-a有4个零点,则1≤a<2;
④已知(a,b)是y=
2013
f(x)
的一个单调递减区间,则b-a的最大值为2.
其中真命题的个数是
3
3

查看答案和解析>>

 一、选择题

 

 

 

二.填空题

(13)         (14)10;         (15)180;           (16)① ③④

 三.解答题

(17)(本小题满分10分)

解 :

(Ⅰ)

函数 的单调增区间为

(Ⅱ)

 

 

 

 

 (18)(本小题满分12分)

解:(I)当

 (II)由(I)得

  

     

(19)(本小题满分12分)

解:依题意,第四项指标抽检合格的概率为 其它三项指标抽检合格的概率均为

    

    (I)若食品监管部门对其四项质量指标依次进行严格的检测,恰好在第三项指标检测结束

时,  能确定该食品不能上市的概率等于第一、第二项指标中恰有一项不合格而且第三项指标不合格的概率.

 

 

  (II)该品牌的食品能上市的概率等于四项指标都含格或第一、第二、第三项指标中仅有

一项不合格且第四项指标合格的概率.

 

(20)(本小题满分12分)

解法1:(I)取A1C1中点D,连结B1D,CD.

C1C=AlA=AlC, CD⊥AlCl

底面 ABC是边长为2的正三角形,

AB=BC=2,A1B1=BlCl=2,

B1D⊥AlCl

BlDCD=D,A1C1平面B1CD, A1C1B1C

(II) 面A1ACCl⊥底面ABC,面AlACC1⊥A1BlC1

又B1D⊥AlC1 BID⊥面A1CCl  

过点D作DE⊥A1C,连BlE,则BlE⊥AlC

B1ED为所求二面角的平面角  

 又A1A⊥A1C, C1C⊥A1C,又D是A1C1的中点,

     

  故所求二面角B1一A1C―C1的大小为arctan

解法2:(I)取AC中点O,连结BO,   ABC是正三角形 BO⊥AC    

又面 A1ACC1⊥底面ABC,BO⊥面A1ACC1 , BO⊥OA1

又AlA=A1CA1O⊥AC,如图建立空间直角坐标系O一xyz

(Ⅱ)为平面A1B1C的一个法向量,

 

故二面角B1-A1C-C1的大小为arccos

(21)(本小题满分12分)  。

  解:(I)曲线 在点( 0,)处的切线与 轴平行  

 

     (II)由c=0,方程 可化为

假没存在实数b使得此方程恰有一个实数根,

  此方程恰有一个实根

②若b>o,则  的变化情况如下

 

 

③若b<o,则  的变化情况如下

 

综合①②③可得,实数b的取值范围是

 

(22)解:, (Ⅰ)由题意设双曲线的标准方程为

由已知得

 

 双曲线G的标准方程为

(Ⅱ)

 

 

化简整理得,

www.ks5u.com

 


同步练习册答案