(Ⅱ)若 ` 21 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)
某电视台为了宣传某沿江城市经济崛起的情况,特举办了一期有奖知识问答活动,活动对18—48岁的人群随机抽取 n人回答问题“沿江城市带包括哪几个城市”,统计数据结果如下表:

组数
分组
回答正
确的人数
占本组
的频率
第1组
[18,28〕
240
X
第2组
[28,38〕
300
0.6
第3组
[38,48〕
a
0.4

(Ⅰ)分别求出n,a,x的值;
(Ⅱ)若以表中的频率近似看作各年龄组正确回答问题的概率,规定年龄在[38,48〕内回答正确的得奖金200元,年龄在[18,28〕内回答正确的得奖金100元。主持人随机请一家庭的两个成员(父亲46岁,孩子21岁)回答正确,求该家庭获得奖金的分布列及数学期望(两人回答问题正确与否相互独立)。

查看答案和解析>>

(本小题满分12分)
某电视台为了宣传某沿江城市经济崛起的情况,特举办了一期有奖知识问答活动,活动对18—48岁的人群随机抽取 n人回答问题“沿江城市带包括哪几个城市”,统计数据结果如下表:
组数
分组
回答正
确的人数
占本组
的频率
第1组
[18,28〕
240
X
第2组
[28,38〕
300
0.6
第3组
[38,48〕
a
0.4

(Ⅰ)分别求出n,a,x的值;
(Ⅱ)若以表中的频率近似看作各年龄组正确回答问题的概率,规定年龄在[38,48〕内回答正确的得奖金200元,年龄在[18,28〕内回答正确的得奖金100元。主持人随机请一家庭的两个成员(父亲46岁,孩子21岁)回答正确,求该家庭获得奖金的分布列及数学期望(两人回答问题正确与否相互独立)。

查看答案和解析>>

(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)

      如题(21)图,M(-2,0)和N(2,0)是平面上的两点,动点P满足:

                             

(Ⅰ)求点P的轨迹方程;

(Ⅱ)设d为点P到直线l: 的距离,若,求的值.

查看答案和解析>>

(本小题满分12分)

经统计,某大医院一个结算窗口每天排队结算的人数及相应的概率如下:

排队人数

0—5

6—10

11—15

16—20

21—25

25人以上

概    率

0.1

0.15

0.25

0.25

0.2

0.05

(1) 每天不超过20人排队结算的概率是多少?

(2) 一周7天中,若有3天以上(含3天)出现超过15人排队结算的概率大于0.75,医院就需要增加结算窗口,请问该医院是否需要增加结算窗口?

查看答案和解析>>

(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)

如题(21)图,的平面上的两点,动点满足:

(Ⅰ)求点的轨迹方程;

(Ⅱ)若

查看答案和解析>>

一、选择题:本题考查基础知识和基本运算.  每题5分,满分60分.

1.D      2。C       3.C       4.A       5.B      6.D 

7.A      8.B       9.A       10.C      11.B     12.A

二、填空题:本题考查基础知识和基本运算.  每题4分,满分16分.

13.15  14.4  15 .  16

三、解答题:本题共6大题,共74分.解答应写出文字说明、证明过程或演算步骤.

17.本题主要考查三角函数性质、三角恒等变换等基本知识,考查推理和运算能力.

解:( I )

  

   (Ⅱ)    

 

 

 18.本题主要考查简单随机抽样,用古典概型计算事件发生的概率等基础知识,考查研究基本事件的能力,以及应用意识。

     解:(I)设红色球有个,依题意得 红色球有4个.

(II)记“甲取出的球的编号比乙的大”为事件A

  所有的基本事件有(红1,白1),(红l,蓝2),(红1,蓝3),(白l,红1),

    (白1,蓝2),(白1,蓝3),(蓝2,红1),(蓝2,自1),(蓝2,蓝3),

(蓝3,红1),(蓝3,白1),(蓝3,蓝2),共12个

事件A包含的基本事件有(蓝2,红1),(蓝2,白1),

(蓝3,蓝2),共5个

所以,

19.本题主要考查线面平行与垂直关系,及多面体的体积计算等基础知识,考查空间想象能力,逻辑思维能力和运算能力.

(I)解:取CD的中点为F,连EF,则EF为的中位线. EF∥A1C

 又EF 平面A1BC,. EF∥平面A1BC

(II)证:四边形ABCD为直角梯形且AD∥BC,

AB⊥BC,AD=2,AB=_BC=1.AC=CD=

AD2=AC2+CD2 为直角三角形  CD⊥AC又四棱   柱ABCD一A1B1C1D1的侧棱  AAl垂直予底面ABCD,

CD 底面ABCD AAl⊥CD,又AA1与AC交于点A,

CD⊥平面A1ACCl    

  由CD⊥平面AlACClCD为四棱锥D-A1ACCl的底面    A1ACCl上的高,

  又AAl垂直于底面ABCD,四边形A1ACC1为矩形

  四棱锥D―A1ACCI的体积

20.此题主要考查数列、等差、等比数列的概念、数列的递推公式、数列前n项和的求法

  同时考查学生的分析问题与解决问题的能力,逻辑推理能力及运算能力.

解:(I)

    

(Ⅱ)

21.本题主要考查直线方程与性质、椭圆方程与性质以及直线与曲线的位置关系等基础知

  识;考查考生数形结合思想、运算求解能力、推理论证能力。

 

解:(I)

        

     

(Ⅱ)

 

22.本题主要考查二次函数及其性质、导数的基本知识,几何意义及其应用,同时考查考生分类讨论思想方法及化规的能力:

 

 解:(Ⅰ)

         

(Ⅱ)

 (Ⅲ)

 

 ①

    

③ 

  

方程有两个不等的正根,存在两条满足条件的切线;

  

 

 

 


同步练习册答案