题目列表(包括答案和解析)
(本题满分16分,其中第(1)小题4分,第(2)小题8分,第(3)小题4分)
设
是两个数列,
为直角坐标平面上的点.对
若三点
共线,
(1)求数列
的通项公式;
(2)若数列{
}满足:
,其中
是第三项为8,公比为4的等比数列.求证:点列
(1,
在同一条直线上;
(3)记数列
、{
}的前
项和分别为
和
,对任意自然数
,是否总存在与
相关的自然数
,使得
?若存在,求出
与
的关系,若不存在,请说明理由.
给出下列四个函数:①f(x)=lnx;②f(x)=x2+1;③f(x)=e-x;④f(x)=sinx,其中满足:“对任意x1、x2∈(1,2),x1≠x2,不等式|f(x1)-f(x2)|<|x1-x2|总成立”的是________.(将正确的序中与填在横线上)
我们知道,如果定义在某区间上的函数
满足对该区间上的任意两个数
、
,
总有不等式
成立,则称函数
为该区间上的向上凸函数(简称上凸).
类比上述定义,对于数列
,如果对任意正整数
,总有不等式:
成立,
则称数列
为向上凸数列(简称上凸数列). 现有数列
满足如下两个条件:
(1)数列
为上凸数列,且
;
(2)对正整数
(
),都有
,其中
.
则数列
中的第五项
的取值范围为 ★ .
我们知道,如果定义在某区间上的函数
满足对该区间上的任意两个数
、
,总有不等式
成立,则称函数
为该区间上的向上凸函数(简称上凸). 类比上述定义,对于数列
,如果对任意正整数
,总有不等式:
成立,则称数列
为向上凸数列(简称上凸数列). 现有数列
满足如下两个条件:
(1)数列
为上凸数列,且
;
(2)对正整数
(
),都有
,其中
.
则数列
中的第五项
的取值范围为 ▲ .
| f(x1)+f(x2) |
| 2 |
| x1+x2 |
| 2 |
| an+an+2 |
| 2 |
一、选择题 ABCBD DBCDC CC
二、填空题
13.6;
;14.
;15.
,1)∪(1,+∞);16。①③④
三、解答题
17. 解:(1)∵
, 且与向量
所成角为
∴
,
∴
,
又
,∴
,即
。
(2)由(1)可得:
∴



∵
,∴
,
∴
,∴
当
=1时,A=
∴AB=2, 则
18.解:(1)P=
(2)随机变量
的取值为0, 1, 2, 3.
由n次独立重复试验概率公式
得
随机变量
的分布列是

0
1
2
3





的数学期望是
19.(I)解:取CE中点P,连结FP、BP,
∵F为CD的中点,∴FP//DE,且FP=
又AB//DE,且AB=
,∴AB//FP,且AB=FP,
∴ABPF为平行四边形,∴AF//BP。…………2分
又∵AF
平面BCE,BP
平面BCE,∴AF//平面BCE。
…………4分
(II)∵△ACD为正三角形,∴AF⊥CD。
∵AB⊥平面ACD,DE//AB,∴DE⊥平面ACD,又AF
平面ACD,
∴DE⊥AF。又AF⊥CD,CD∩DE=D,∴AF⊥平面CDE。 …………6分
又BP//AF,∴BP⊥平面CDE。又∵BP
平面BCE,
∴平面BCE⊥平面CDE。 …………8分
(III)由(II),以F为坐标原点,FA,FD,FP所在的直线分别为x,y,z轴(如图),建立空间直角坐标系F―xyz.设AC=2,
则C(0,―1,0),
………………9分
……10分
显然,
为平面ACD的法向量。
设平面BCE与平面ACD所成锐二面角为
,即平面BCE与平面ACD所成锐二面角为45°。…………12分
20.(1)
时,
,即
当
时,
即
在
上是减函数的充要条件为
………(4分)
(2)由(1)知,当
时
为减函数,
的最大值为
;
当
时,
当
时
,当
时
即在
上
是增函数,在
上
是减函数,
时
取最大值,最大值为
即
…(8分)
(3)在(1)中取
,即
由(1)知
在
上是减函数
,即
,解得:
或
故所求不等式的解集为[
……………(12分)
21. 解:(1)
,
,
又
,∴数列
是首项为
,公比为
的等比数列.
(2)依(Ⅰ)的结论有
,即
.
.
.
(3)
,又由(Ⅱ)有
.
则
(
) = 
=( 1-
)<∴ 对任意的
,
.
22.解:(I)由条件知:
………2分
得
………4分
(II)依条件有:
………5分, 由

8分

由
,
………10分
由弦长公式得
由

湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com