13.一个社会调查机构就某地居民的月收入调查了10000人.并根据所得数据画了样本的频率分布直方图.为了分析居民的收入与年龄.学历.职业等方面的关系.要从这10000人中再用分层抽样方法 查看更多

 

题目列表(包括答案和解析)

一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出
 
人.
精英家教网

查看答案和解析>>

7、一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(如图所示).为了分析居民的收入与年龄、学历、职业等方面的关系,在从这10000人中再用分层抽样方法抽出100人作进一步调查,则在(2500,3500元/月)收入段应抽出
40
人.

查看答案和解析>>

2、一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图),为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在(2500,3000)(元)月收入段应抽出的人数为(  )

查看答案和解析>>

5、一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样的方法抽出200人作进一步调查,其中低于1 500元的称为低收入者,高于3 000元的称为高收入者,则应在低收入者和高收入者中分别抽取的人数是(  )

查看答案和解析>>

16、一个社会调查机构就某地居民的月收入调查了1000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这1000人中再用分层抽样方法抽出80人作进一步调查,则在[1500,2000)(元)月收入段应抽出
16
人.

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

答案

D

A

B

C

B

B

B

D

二、填空题

9.1;      10. ;   11.12;    12.;    13.;   14.

三、解答题

15.解:(Ⅰ)由,根据正弦定理得

所以,…………………………………………………………………………………………4分

为锐角三角形得.                 …………………………………………7分

(Ⅱ)根据余弦定理,得.           ………10分

所以,.                ……………………………………………………………12分

 

16.解:(1)由题意可知

时, .                   ……3分

时,,亦满足上式.                            ……5分

∴数列的通项公式为).                            ……6分

(2)由(1)可知,                                                ……7分

∴数列是以首项为,公比为的等比数列,                           ……9分

.                                   ……12分

 

17.

 

……5分

 

 

 

 

 

 

 

 

……12分

 

……14分

 

 

 

 

 

 

 

 

 

……12分

 

……14分

 

 

18.解:(1)由   …………………2分

……4分

 

函数的单调区间如下表:

(-¥,-

(-,1)

1

(1,+¥)

0

0

­

极大值

¯

极小值

­

所以函数的递增区间是(-¥,-)与(1,+¥),递减区间是(-,1)。      …9分

(2)

时,为极大值,而,则为最大值。

要使恒成立,只需

解得。                                        ……………………14分

19.解:(1)设所求直线的斜率为,其方程为,代入椭圆方程并化简得:

                …………………………2分

        设直线l与椭圆交于P1x1y1)、P2x2y2),则

因为(4,2)是直线l被椭圆所截得的线段的中点,则

,解得。         …………………………………………6分

由点斜式可得l的方程为x+2y-8=0.               ………………………………………8分

(2)由(1)知,     ………………………10分

       ……………14分

 

 

 

 

20. 解:设AN的长为x米(x >2)

             ∵,∴|AM|=

∴SAMPN=|AN|•|AM|=         …………………………………………………………4分

(1)由SAMPN > 32 得  > 32 ,

         ∵x >2,∴,即(3x-8)(x-8)> 0

         ∴         即AN长的取值范围是……………………………8分

(2)令y=,则y′= ……………………………………… 10分

∵当,y′< 0,∴函数y=上为单调递减函数,

∴当x=3时y=取得最大值,即(平方米)

此时|AN|=3米,|AM|=米      ……………………………………………………… 14分