19.(1)证明:数列是等差数列.设公差为.则对恒成立. 查看更多

 

题目列表(包括答案和解析)

设等差数列{an}的前n项和为Sn,且Sn=
1
2
nan+an-c
(c是常数,n∈N*),a2=6.
(Ⅰ)求c的值及数列{an}的通项公式;
(Ⅱ)证明:
1
a1a2
+
1
a2a3
+…+
1
anan+1
1
8

查看答案和解析>>

已知{an}是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合A={(an
Sn
n
)|n∈N*},B={(x,y)|
1
4
x2-y2=1,x,y∈R}.试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明:
(1)若以集合A中的元素作为点的坐标,则这些点都在同一条直线上;
(2)A∩B至多有一个元素;
(3)当a1≠0时,一定有A∩B≠∅.

查看答案和解析>>

数列{an}是公差为d(d>0)的等差数列,且a2是a1与a4的等比中项,设Sn=a1+a3+a5+…+a2n-1(n∈N*).
(1)求证:
Sn
+
Sn+2
=2
Sn+1

(2)若d=
1
4
,令bn=
Sn
2n-1
,{bn}的前n项和为Tn,是否存在整数P、Q,使得对任意n∈N*,都有P<Tn<Q,若存在,求出P的最大值及Q的最小值;若不存在,请说明理由.

查看答案和解析>>

设等差数列的公差为,点在函数的图象上().
(1)证明:数列是等比数列;
(2)若,学科网函数的图象在点处的切线在轴上的截距为,求数列的前项和.

查看答案和解析>>

已知等差数列{an}的公差为d(d≠0),等比数列{bn}的公比为q(q>1),设Sn=a1b1+a2b2+…anbn,Tn=a1b1-a2b2+…+(-1)n-1anbn,n∈N*。
(1)若a1=b1=1,d=2,q=3,求S3的值。
(2)若b1=1,证明:(1-q)S2n-(1+q)T2n=,n∈N*。
(3)若正整数n满足2≤n≤q,设k1,k2,…kn和l1,l2,…ln是1,2,…,n的两个不同的排列,c1=,c2=,证明c1≠c2

查看答案和解析>>


同步练习册答案