题目列表(包括答案和解析)
(本大题满分12分)
已知A、B、C的坐标分别为A(3,0)、B(0,3)、C(
),
.
(1)若
,求角
的值;![]()
(2)若
,求
的值.
(本小题满分12分)已知A、B、C三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从A、B、C三个箱子中各摸出1个球.
(I)若用数组(x,y,z)中的x、y、z分别表示从A、B、C三个箱子中摸出的球的号码,请写出数组(x,y,z)的所有情形,并回答一共有多少种;
(Ⅱ)如果请您猜测摸出的这三个球的号码之和,猜中有奖.那么猜什么数获奖的可能性
最大?请说明理由. ’
(本小题满分12分)
已知A、B、C为
的三个内角,向量
,且![]()
(Ⅰ)求
的值;
(Ⅱ)求C的最大值,并判断此时
的形状.
(本小题满分12分)
已知△ABC的三边长为a、b、c,且其中任意两边长均不相等.若
成等差数列.
(1)比较
与
的大小,并证明你的结论;
(2)求证B不可能是钝角.
(本小题满分12分)
已知在锐角△ABC中,a, b, c分别为角A、B、C所对的边,向量
,
,
.
(1)求角A的大小;
(2)若a=3,求△ABC面积的最大值.
一.选择题:DCBBA
二.填空题:11.4x-3y-17 = 0 12.33 13.
14.
15.
三.解答题:
16.(1)解:∵
,
2分
∴由
得:
,即
4分
又∵
,∴
6分
(2)解:
8分
由
得:
,即
10分
两边平方得:
,∴
12分
17.方法一
(1)证:∵CD⊥AB,CD⊥BC,∴CD⊥平面ABC 2分
又∵CDÌ平面ACD,∴平面ACD⊥平面ABC 4分
(2)解:∵AB⊥BC,AB⊥CD,∴AB⊥平面BCD,故AB⊥BD
∴∠CBD是二面角C-AB-D的平面角
6分
∵在Rt△BCD中,BC = CD,∴∠CBD = 45°
即二面角C-AB-D的大小为45°
8分
(3)解:过点B作BH⊥AC,垂足为H,连结DH
∵平面ACD⊥平面ABC,∴BH⊥平面ACD,
∴∠BDH为BD与平面ACD所成的角
10分
设AB = a,在Rt△BHD中,
,
∴
又
,∴
12分
方法二
(1)同方法一 4分
(2)解:设以过B点且∥CD的向量为x轴,
为y轴和z轴建立如图所示的空间直角坐标系,设AB = a,则A(0,0,a),C(0,1,0),D(1,1,0),
= (1,1,0),
= (0,0,a)
平面ABC的法向量
= (1,0,0)
设平面ABD的一个法向量为n = (x,y,z),则

取n = (1,-1,0)
6分

∴二面角C-AB-D的大小为45° 8分
(3)解:
= (0,1,-a),
= (1,0,0),
= (1,1,0)
设平面ACD的一个法向量是m = (x,y,z),则
∴可取m = (0,a,1),设直线BD与平面ACD所成角为
,则向量
、m的夹角为
故
10分
即
又
,∴
12分
18.解:该商场应在箱中至少放入x个其它颜色的球,获得奖金数为
,
则
= 0,100,150,200
,
,
,
8分
∴
的分布列为
|