4.解:(1)赋值法:分别令..得 -----2分 查看更多

 

题目列表(包括答案和解析)

观察下列问题:
已知(1-2x)2013=a0+a1x+a2x2+a3x3+…+a2013x2013
令x=0,可得a0=1,
令x=1,可得a0+a1+a2+a3+…+a2013=(1-2•1)2013=-1,
令x=-1,可得a0-a1+a2+a3+…-a2013=(1+2•1)2013=32013
请仿照这种“赋值法”,求出
a1
2
+
a2
22
+
a3
23
+…+
a2013
22013
=
-1
-1

查看答案和解析>>

20.在二项式的展开式中,前三项系数的绝对值成等差数列

(1)求展开式的常数项; (2)求展开式中二项式系数最大的项;

(3)求展开式中各项的系数和。

【解析】本试题主要考查了二项式定理中通项公式和二项式系数的概念以及求解各个系数和的运用,赋值法思想要深刻体会。

 

查看答案和解析>>

函数的定义域为,且满足对于任意,有

⑴求的值;

⑵判断的奇偶性并证明;

⑶如果,且上是增函数,求的取值范围.

【解析】(Ⅰ) 通过赋值法,,求出f(1)0;

(Ⅱ) 说明函数f(x)的奇偶性,通过令,得.令,得,推出对于任意的x∈R,恒有f(-x)=f(x),f(x)为偶函数.

(Ⅲ) 推出函数的周期,根据函数在[-2,2]的图象以及函数的周期性,即可求满足f(2x-1)≥12的实数x的集合.

 

查看答案和解析>>

观察下列问题:
已知(1-2x)2013=a+a1x+a2x2+a3x3+…+a2013x2013
令x=0,可得a=1,
令x=1,可得a+a1+a2+a3+…+a2013=2013=-1,
令x=-1,可得a-a1+a2+a3+…-a2013=2013=32013
请仿照这种“赋值法”,求出 =   

查看答案和解析>>

观察下列问题:
已知(1-2x)2013=a0+a1x+a2x2+a3x3+…+a2013x2013
令x=0,可得a0=1,
令x=1,可得a0+a1+a2+a3+…+a2013=(1-2•1)2013=-1,
令x=-1,可得a0-a1+a2+a3+…-a2013=(1+2•1)2013=32013
请仿照这种“赋值法”,求出
a1
2
+
a2
22
+
a3
23
+…+
a2013
22013
=______.

查看答案和解析>>


同步练习册答案