5.某班50名学生在一次百米测试中.成绩全部介于13秒与19秒之间.将测试结果按如下方式分成六组:第一组.成绩大于等于13秒且小于14秒,第二组.成绩大于等于14秒且小于15秒,-,第六组.成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图. 设成绩小于17秒的学生人数占全班人数的百分比为.成绩大于等于15秒且小于17秒的学生人数为y.则从频率分布直方图中可分析出x和y分别为------------------------- 查看更多

 

题目列表(包括答案和解析)

4、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:每一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…第六组,成绩大于等于18秒且小于等于19秒.如图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可以分析出x和y分别为(  )

查看答案和解析>>

5、某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果绘制成频率分布直方图(如图),若成绩介于
14秒与16秒之间认为是良好,则该班在这次测试中成绩良好的人数为
27

查看答案和解析>>

11、某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图,现从中任抽一名同学,该同学的百米测试成绩为m,m∈[13,14)∪[17,18],则事件“m∈[13,14)∪[17,18]”的概率为
0.14

查看答案和解析>>

精英家教网某班50名学生在一次百米测试中,成绩全部在[13,18]内,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15);…第五组[17,18].右图是按上述分组方法得到的频率分布直方图.且第一组,第二组,第四组的频数成等比数列,m,n表示该班某两位同学的百米测试成绩,且m,n∈[13,14)∪[17,18].则事件“|m-n|>1”的概率为(  )
A、
2
7
B、
4
7
C、
3
7
D、
5
7

查看答案和解析>>

精英家教网某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18]如图是按上述分组方法得到的频率分布直方图.
(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数.
(2)设m,n表示该班两个学生的百米测试成绩,已知m,n∈[13,14)∪[17,18]求事件“|m-n|>2”的概率.

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

A

D

A

A

A

A

B

B

A

D

二、填空题

11. 8 + ; 12. 60;  13.;    14.  14;   15. .

三、解答题

16. 解:(1)依题意的,所以,于是       ……………2分

解得                                             ……………4分

代入,可得,所以,

所以,因为,所以 综上所述,   …………7分

(2)令,得,又  

函数的零点是                   ……………10分

 

函数的单调递增区间是                                ……………13分

17. 解:(1)当中点时,有平面        ………2分

证明:连结,连结∵四边形是矩形  ∴中点

中点,从而  ……………………………4分

平面,平面平面……………6分

(2)建立空间直角坐标系如图所示,则,,,,  ……7分

所以,.   ……………………………8分

为平面的法向量,则有,即,可得平面的一个法向量为,

而平面的一个法向量为                                       ……………11分

所以所以二面角的余弦值为……………13分

18. 解:

19.解:

(1)依题意双曲线方程可化为=4

点P的轨迹是以为焦点的椭圆,其方程可设为

则所求椭圆方程为

故动点P的轨迹E的方程为;………………3分

(2)设,则由可知

当且仅当时等号成立.故的最小值为………………6分

(3)当轴重合时,构不成角AMB,不合题意.

轴时,直线的方程为,代入解得的坐标分别为   而,∴,猜测为定值.………8分

证明:设直线的方程为,由  ,得

………10分

         

         

为定值。(AB与点M不重合)  ……13分

20.解:

(1)当时,由;当时由

综上:当时函数的定义域为; 当时函数的定义域为………3分

(2)………5分

时,得

①当时,,当时,

故当 时,函数的递增区间为,递减区间为

②当时,,所以

故当时,上单调递增.

③当时,若;若

故当时,的单调递增区间为;单调递减区间为

综上:当时,的单调递增区间为;单调递减区间为

时,的单调递增区间为;

时,的单调递增区间为;单调递减区间为;   …10分

(Ⅲ)因为当时,函数的递增区间为;单调递减区间为

若存在使得成立,只须

    ………14分

 

 

 

 

 

 

21.(本题满分14分,共3小题,任选其中2题作答,每小题7分)

 (1)选修4-2:矩阵与变换

解:由 M=  N= 可得

的特征多项式为

得矩阵的特征值为

再分别求得对应于特征值的特征向量…………7分

(2) 选修4-5:不等式选讲

(1)解:依题意可知

则函数的图像如图所示:

 

(2)由函数的图像容易求得原不等式的解集为…………7分

 

(3) 选修4-4:坐标系与参数方程

解:由 则易得易得

圆心到直线的距离为

又圆的半径为2 , 圆上的点到直线的距离的最小值为…………7分

 

 

 


同步练习册答案