(Ⅰ)证明:数列是等比数列, (Ⅱ)数列的前项和. 查看更多

 

题目列表(包括答案和解析)

等比数列{cn}满足cn+1+cn=5•22n-1,n∈N*,数列{an}满足an=log2cn
(Ⅰ)求{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
1
anan+1
,Tn为数列{bn}的前n项和.求证:Tn
1
2

(Ⅲ)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n 的值;若不存在,请说明理由.

查看答案和解析>>

设等比数列{an}的前n项的和为Sn,公比为q(q≠1).
(1)若S4,S12,S8成等差数列,求证:a10,a18,a14成等差数列;
(2)若Sm,Sk,St(m,k,t为互不相等的正整数)成等差数列,试问数列{an}中是否存在不同的三项成等差数列?若存在,写出两组这三项;若不存在,请说明理由;
(3)若q为大于1的正整数.试问{an}中是否存在一项ak,使得ak恰好可以表示为该数列中连续两项的和?请说明理由.

查看答案和解析>>

设等比数列的前n项和为Sn,已知

(1)求数列通项公式;

(2)在之间插入n个数,使这n+2个数组成一个公差为的等差数列。

   (Ⅰ)求证:

(Ⅱ)在数列中是否存在三项(其中m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由

 

查看答案和解析>>

设等比数列{an}的前n项的和为Sn,公比为q(q≠1).
(1)若S4,S12,S8成等差数列,求证:a10,a18,a14成等差数列;
(2)若Sm,Sk,St(m,k,t为互不相等的正整数)成等差数列,试问数列{an}中是否存在不同的三项成等差数列?若存在,写出两组这三项;若不存在,请说明理由;
(3)若q为大于1的正整数.试问{an}中是否存在一项ak,使得ak恰好可以表示为该数列中连续两项的和?请说明理由.

查看答案和解析>>

设等比数列的前n项和为Sn,已知
(1)求数列通项公式;
(2)在之间插入n个数,使这n+2个数组成一个公差为的等差数列。
(Ⅰ)求证:
(Ⅱ)在数列中是否存在三项(其中m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由

查看答案和解析>>

一、选择题

1.A      2.C      3.A      4.C      5.D      6.C    7.B     8.C      9.A      10.A

11.D    12.D

二、填空题

13.  10       14.         15.     4      16.

三、解答题

17.解:(Ⅰ)的内角和,由

       应用正弦定理,知

      

      

       因为

       所以

       (Ⅱ)因为

                       

       所以,当,即时,取得最大值

 

 

18.解:(Ⅰ)总体平均数为

(Ⅱ)设表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”

从总体中抽取2个个体全部可能的基本结果有:.共15个基本结果.

事件包括的基本结果有:.共有7个基本结果.

所以所求的概率为

.      

19.解:(Ⅰ)  由三视图可知,四棱锥的底面是边长为1的正方形,

侧棱底面,且.             

即四棱锥的体积为.            

(Ⅱ) 连结

是正方形,

的中点,且的中点

                  

   

                   

(Ⅲ)不论点在何位置,都有.                        

证明如下:∵是正方形,∴.      

底面,且平面,∴.    

又∵,∴平面.                      

∵不论点在何位置,都有平面

∴不论点在何位置,都有.                        

20.解:(Ⅰ)

          ,又

          数列是以为首项,为公比的等比数列.

(Ⅱ)由(Ⅰ)知,即

,     ①

,②

由①②得

      

.又

数列的前项和

21.解:(Ⅰ)

因为函数的极值点,所以,即,因此

经验证,当时,是函数的极值点.

(Ⅱ)由题设,

在区间上的最大值为时,

故得

反之,当时,对任意

,故在区间上的最大值为

综上,的取值范围为.   

 22.解:(Ⅰ)设椭圆的半焦距为,依题意

所求椭圆方程为

(Ⅱ)设

(1)当轴时,

(2)当轴不垂直时,

设直线的方程为

由已知,得

代入椭圆方程,整理得

当且仅当,即时等号成立.当时,

综上所述

最大时,面积取最大值

 

 

 


同步练习册答案