题目列表(包括答案和解析)
已知f(x)=ax2+bx+c (a>0),α,β为方程f(x)=x的两根,且0<α<β,当0<x<α时,给出下列不等式,成立的是 ( )
A.x<f(x) B.x≤f(x)
C.x>f(x) D.x≥f(x)
已知f(x)=ax2+bx+c (a>0),α,β为方程f(x)=x的两根,且0<α<β,当0<x<α时,给出下列不等式,成立的是 ( )
A.x<f(x) B.x≤f(x) C.x>f(x) D.x≥f(x)
已知函数f(x)=ax2+2ax+4(a>0),若x1<x2 , x1+x2=0 , 则( )
A.f(x1)<f(x2) B.f(x1)=f(x2) C.f(x1)>f(x2) D.f(x1)与f(x2)的大小不能确定
定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数且(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系
是( )
A.f(x1)<f(x2) B.f(x1)=f(x2)
C.f(x1)>f(x2) D.不确定
一、选择题
1―10 ACBCB DBCDD
二、填空题
11.
12.
13.―3 14.
15.2 16.
17.<
三、解答题:
18.解:(I)

(II)由于区间
的长度是为
,为半个周期。
又
分别取到函数的最小值
所以函数
上的值域为
。……14分
19.解:(Ⅰ)证明:连接BD,设AC与BD相交于点F.
因为四边形ABCD是菱形,所以AC⊥BD.……………………2分
又因为PD⊥平面ABCD,AC
平面ABCD,所以PD⊥AC.………………4分
而AC∩BD=F,所以AC⊥平面PDB.
E为PB上任意一点,DE
平面PBD,所以AC⊥DE.……………………6分
(Ⅱ)连EF.由(Ⅰ),知AC⊥平面PDB,EF
平面PBD,所以AC⊥EF.
S△ACE =
AC?EF,在△ACE面积最小时,EF最小,则EF⊥PB.
S△ACE=9,
×6×EF=9,解得EF=3. …………………8分
由PB⊥EF且PB⊥AC得PB⊥平面AEC,则PB⊥EC,
又由EF=AF=FC=3,得EC⊥AE,而PB∩AE=E,故EC⊥平面PAB。………10分
作GH//CE交PB于点G,则GH⊥平面PAB,
所以∠GEH就是EG与平面PAB所成角。 ………………12分
在直角三角形CEB中,BC=6,
|