19. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)

已知实数,曲线与直线的交点为(异于原点),在曲线 上取一点,过点平行于轴,交直线于点,过点平行于轴,交曲线于点,接着过点平行于轴,交直线于点,过点平行于轴,交曲线于点,如此下去,可以得到点,…,,… .  设点的坐标为.

(Ⅰ)试用表示,并证明;   

(Ⅱ)试证明,且);

(Ⅲ)当时,求证:  ().

查看答案和解析>>

(本题满分14分)

 已知函数图象上一点处的切线方程为

(Ⅰ)求的值;

(Ⅱ)若方程内有两个不等实根,求的取值范围(其中为自然对数的底数);

(Ⅲ)令,若的图象与轴交于(其中),的中点为,求证:处的导数

查看答案和解析>>

(本题满分14分)

已知曲线方程为,过原点O作曲线的切线

(1)求的方程;

(2)求曲线轴围成的图形面积S;

(3)试比较的大小,并说明理由。

查看答案和解析>>

(本题满分14分)

已知中心在原点,对称轴为坐标轴的椭圆,左焦点,一个顶点坐标为(0,1)

(1)求椭圆方程;

(2)直线过椭圆的右焦点交椭圆于A、B两点,当△AOB面积最大时,求直线方程。

查看答案和解析>>

(本题满分14分)

如图,在直三棱柱中,,,求二面角的大小。    

查看答案和解析>>

一、选择题:

1―5  ACBBD    6―10  BCDAC

二、填空题:

11.60    12.       13.―     14.

15.2    16.    17.

三、解答题:

18.解:(I)

20090506

   (II)由于区间的长度是为,为半个周期。

    又分别取到函数的最小值

所以函数上的值域为。……14分

19.解:(1)该同学投中于球但未通过考核,即投蓝四次,投中二次,且这两次不连续,其概率为                                 …………5分

   (2)在这次考核中,每位同学通过考核的概率为

      ………………10分

    随机变量X服从其数学期望

  …………14分

20.解:(1)设FD的中点为G,则TG//BD,而BD//CE,

    当a=5时,AF=5,BD=1,得TG=3。

    又CE=3,TG=CE。

    *四边形TGEC是平行四边形。      

*CT//EG,TC//平面DEF,………………4分

   (2)以T为原点,以射线TB,TC,TG分别为x,y,z轴,

建立空间直角坐标系,则D(1,0,1),

              ………………6分

    则平面DEF的法向量n=(x,y,z)满足:

 

    解之可得又平面ABC的法向量

m=(0,0,1)

   

   即平面DEF与平面ABC相交所成且为锐角的二面角的余弦值为  ……9分

   (3)由P在DE上,可设,……10分

    则

                   ………………11分

    若CP⊥平面DEF,则

    即

 

 

    解之得:                ……………………13分

    即当a=2时,在DE上存在点P,满足DP=3PE,使CP⊥平面DEF。…………14分

21.解:(1)因为        所以

    椭圆方程为:                          ………………4分

   (2)由(1)得F(1,0),所以。假设存在满足题意的直线l,设l的方程为

   

    代入       ………………6分

    设   ①

                  ……………………8分

    设AB的中点为M,则

   

     ……………………11分

    ,即存在这样的直线l

    当时, k不存在,即不存在这样的直线l;……………………14分

 

 

 

 

22.解:(I) ……………………2分

    令(舍去)

    单调递增;

    当单调递减。    ……………………4分

    为函数在[0,1]上的极大值。        ……………………5分

   (II)由

 ①        ………………………7分

依题意知上恒成立。

都在上单调递增,要使不等式①成立,

当且仅当…………………………11分

   (III)由

,则

上递增;

上递减;

        …………………………16分