题目列表(包括答案和解析)
John Philips在青岛博爱中学任教期间,工作相当出色,最近他获该市“友谊”奖章。为此,China Daily准备刊登他的照片。请你就下表中所列的内容,写一篇120个单词左右的文字说明,简要介绍他的情况。
| 姓名 | John Philips | 性别 | 男 | 国籍 | 美国 |
| 出生年月 | 1949年1月 | 职业 | 英语教师 | ||
| 简历 | 1975年毕业于中密歇根大学(Central Michigan University) | ||||
| 1975年~1985年在一家公司工作 | |||||
| 1986年至今在青岛博爱中学教英语 | |||||
| 主要事迹 | 1.热爱教学;专心于教学工作 | ||||
| 2.积极进行教学改革,课上得生动有趣 | |||||
| 3.爱护学生 | |||||
| 4.业余时间经常和外语老师一起研究英语教学改革 | |||||
请根据下列表格的内容提示,写一篇题为SAVE EARTH, SAVE US的公益广告解说词。
|
污染的原因 |
人类的生产和生活活动(请自行列举) |
|
||
|
污染类型 |
1. 空气污染 2. 噪音污染 3. 水污染 |
||
|
造成后果 |
1. 物种减少 2. 人类健康受损 3. 环境恶化 |
||
|
建议措施 |
(请自己列出若干条) |
||
注意:1. 词数:120左右。 2.内容要涵盖上面所列的几条。
书面表达(满分25分)(请将答案写在答卷上的规定位置。)
| 污染的原因 | 污染类型 | 造成后果 | 建议措施 |
| 人类的生产和生活活动(已列出) | 1. 空气污染 2. 噪音污染 3. 水污染 | 1. 物种减少 2. 人类健康受损 3. 环境恶化 | (请自己列出两条) |
书面表达(满分25分)(请将答案写在答卷上的规定位置。)
|
污染的原因 |
污染类型 |
造成后果 |
建议措施 |
|
人类的生产和生活活动(已列出) |
1. 空气污染 2. 噪音污染 3. 水污染 |
1. 物种减少 2. 人类健康受损 3. 环境恶化 |
(请自己列出两条) |
请根据下列表格的内容提示,写一篇题为SAVE EARTH, SAVE US的公益广告解说词。
注意: 1. 词数:120词左右;
内容要涵盖上面所列的几条;
不能逐词翻译。
John Philips在青岛博爱中学任教期间,工作相当出色,最近他获该市“友谊”奖章。为此,China Daily准备刊登他的照片。请你就下表中所列的内容,写一篇120个单词左右的文字说明,简要介绍他的情况。
|
姓名 |
John Philips |
性别 |
男 |
国籍 |
美国 |
|
出生年月 |
1949年1月 |
职业 |
英语教师 |
|
|
|
简历 |
1975年毕业于中密歇根大学(Central Michigan University) |
||||
|
1975年~1985年在一家公司工作 |
|||||
|
1986年至今在青岛博爱中学教英语 |
|||||
|
主要事迹 |
1.热爱教学;专心于教学工作 |
||||
|
2.积极进行教学改革,课上得生动有趣 |
|||||
|
3.爱护学生 |
|||||
|
4.业余时间经常和外语老师一起研究英语教学改革 |
1.解析:
,故选A。
2.解析:抽取回族学生人数是
,故选B。
3.解析:由
,得
,此时
,所以,
,故选C。
4.解析:∵
∥
,∴
,∴
,故选C。
5.解析:设公差为
,由题意得,
;
,解得
或
,故选C。
6.解析:∵双曲线
的右焦点到一条渐近线的距离等于焦距的
,∴
,又∵
,∴
,∴双曲线的渐近线方程是
,故选D.
7.解析:∵
、
为正实数,∴
,∴
;由均值不等式得
恒成立,
,故②不恒成立,又因为函数
在
是增函数,∴
,故恒成立的不等式是①③④。故选C.
8.解析:∵
,∴
在区间
上恒成立,即
在区间
上恒成立,∴
,故选D。
9.解析:∵卷.files/image084.gif)
卷.files/image346.gif)
,∴此函数的最小正周期是
,故选C。
10.解析:如图,∵正三角形
的边长为
,∴
,∴
,又∵
,∴
,故选D。
11.解析:∵
在区间
上是增函数且
,∴其反函数
在区间上
是增函数,∴卷.files/image121.gif)
卷.files/image125.gif)
,故选A
12.解析:如图,①当
或
时,圆面
被分成2块,涂色方法有20种;②当
或
时,圆面
被分成3块,涂色方法有60种;
③当
时,圆面
被分成4块,涂色方法有120种,所以m的取值范围是
,故选A。
13.解析:将
代入
结果为
,∴
时,
表示直线
右侧区域,反之,若
表示直线
右侧区域,则
,∴是充分不必要条件。
14.解析:∵
,∴
时,
,又
时,
满足上式,因此,
。
15.解析:设正四面体的棱长为
,连
,取
的中点
,连
,∵
为
的中点,∴
∥
,∴
或其补角为
与
所成角,∵
,
,∴
,∴
,又∵
,∴
,∴
与
所成角的余弦值为
。
16.解析:∵
,∴
,∵点
为
的准线与
轴的交点,由向量的加法法则及抛物线的对称性可知,点
为抛物线上关于轴对称的两点且做出图形如右图,其中
为点
到准线的距离,四边形
为菱形,∴
,∴
,∴
,∴
,∴
,∴向量
与
的夹角为
。
17.(10分)解析:(Ⅰ)由正弦定理得,
,
,…2分
∴
,
,………4分
(Ⅱ)∵
,
,∴
,∴
,………………………6分
又∵
,∴
,∴
,………………………8分
∴
。………………………10分
18.解析:(Ⅰ)∵
,∴
;……………………理3文4分
(Ⅱ)∵三科会考不合格的概率均为
,∴学生甲不能拿到高中毕业证的概率
;……………………理6文8分
(Ⅲ)∵每科得A,B的概率分别为
,∴学生甲被评为三好学生的概率为
。……………………12分
19.(12分)解析:(Ⅰ)∵
,∴
,
,
,……………3分
(Ⅱ)∵
,∴卷.files/image484.gif)
,
∴
,卷.files/image490.gif)
卷.files/image486.gif)
又
,∴数列
自第2项起是公比为
的等比数列,………………………6分
∴
,………………………8分
(Ⅲ)∵
,∴
,………………10分
∴
。………………………12分
20.解析:(Ⅰ)∵
∥
,
,∴
,∵
底面
,∴
,∴
平面
,∴
,又∵
平面
,∴
,∴
平面
,∴
。………………………4分
(Ⅱ)∵
平面
,∴
,
,∴
为二面角
的平面角,………………………6分
,
,∴
,又∵
平面
,
,∴
,∴二面角
的正切值的大小为
。………………………8分
(Ⅲ)过点
做
∥
,交
于点
,∵
平面
,∴
为
在平面
内的射影,∴
为
与平面
所成的角,………………………10分
∵
,∴
,又∵
∥
,∴
和
与平面
所成的角相等,∴
与平面
所成角的正切值为
。………………………12分
解法2:如图建立空间直角坐标系,(Ⅰ)∵,
,∴点
的坐标分别是
,
,卷.files/image560.gif)
,∴
,
,设
,∵
平面
,∴
,∴
,取
,∴
,∴
。………………………4分
(Ⅱ)设二面角
的大小为
,∵平面
的法向量是
,平面
的法向量是
,∴
,∴
,∴二面角
的正切值的大小为
。………………………8分
(Ⅲ)设
与平面
所成角的大小为
,∵平面
的法向量是
,
,∴
,∴
,∴
与平面
所成角的正切值为
。………………………12分
21.解析:(Ⅰ)设抛物线方程为
,将
代入方程得卷.files/image600.gif)
所以抛物线方程为
。………………………2分
由题意知椭圆的焦点为
、
。
设椭圆的方程为
,
∵过点
,∴
,解得,
,
,
∴椭圆的方程为
。………………………5分
(Ⅱ)设
的中点为
,
的方程为:
,
以
为直径的圆交
于
两点,
中点为
。
设
,则卷.files/image632.gif)
∵
………………………8分
∴卷.files/image638.gif)
………………………10分
当
时,
,
,
此时,直线
的方程为
。………………………12分
22.(12分)解析:(Ⅰ)∵
是偶函数,∴
,
又∵
∴
,
,………………………2分
由
得,
,
∵
时,
;
时,
;
时,
;∴
时,函数
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com