题目列表(包括答案和解析)
如图,已知圆锥体
的侧面积为
,底面半径
和
互相垂直,且
,
是母线
的中点.
![]()
(1)求圆锥体的体积;
(2)异面直线
与
所成角的大小(结果用反三角函数表示).
【解析】本试题主要考查了圆锥的体积和异面直线的所成的角的大小的求解。
第一问中,由题意,
得
,故![]()
从而体积
.2中取OB中点H,联结PH,AH.
由P是SB的中点知PH//SO,则
(或其补角)就是异面直线SO与PA所成角.
由SO
平面OAB,
PH
平面OAB,PH
AH.在
OAH中,由OA
OB得
;
在
中,
,PH=1/2SB=2,
,
则
,所以异面直线SO与P成角的大arctan![]()
解:(1)由题意,
得
,
故
从而体积
.
(2)如图2,取OB中点H,联结PH,AH.
![]()
由P是SB的中点知PH//SO,则
(或其补角)就是异面直线SO与PA所成角.
由SO
平面OAB,
PH
平面OAB,PH
AH.
在
OAH中,由OA
OB得
;
在
中,
,PH=1/2SB=2,
,
则
,所以异面直线SO与P成角的大arctan![]()
对于下列命题:
①已知集合
,
,则
;
②函数
在
为单调函数;
③在平面直角坐标系内,点
与
在直线
的异侧;
④若
则
或
;
⑤互为反函数的两个不同函数的图象若有交点,则交点一定在直线
上。其中正确命题的序号为 。(写出所有正确命题的序号)
对于下列命题:
①已知集合
,
,则
;
②函数
在
为单调函数;
③在平面直角坐标系内,点
与
在直线
的异侧;
④若
则
或
;
⑤互为反函数的两个不同函数的图象若有交点,则交点一定在直线
上。其中正确命题的序号为 。(写出所有正确命题的序号)
一、选择题(每小题5分,满分60分)
1
2
3
4
5
6
7
8
9
10
11
12
D
C
D
B
B
A
C
C
A
D
A
D
二、填空题(每小题4分,满分16分)
13.-6 14.
15.
16.②③
三、解答题(第17、18、19、20、21题各12分,第22题14分,共74分)
17.(I)

(Ⅱ)


函数
的值域为
18.解:(I)记“甲回答对这道题”、“乙回答对这道题”、“丙回答对这道题”分别为事件
、
、
,则
,且有
即

(Ⅱ)由(1)
则甲、乙、丙三人中恰有两人回答对该题的概率为:

19.解:法一
(I)设
是
的中点,连结
,
则四边形
为方形,
,故
,

即
又
平面
(Ⅱ)由(I)知
平面
,
又
平面
,
,
取
的中点
,连结
又
,
则
,取
的中点
,连结
则
为二面角
的平面角
连结
,在
中,
,
取
的中点
,连结
,
,在
中,

二面角
的余弦值为
法二:
(I)以
为原点,
所在直线分别为
轴,
轴,
轴建立如图所示的空间直角坐标系,则


又因为
所以,
平面
(Ⅱ)设
为平面
的一个法向量。
由
得
取
,则
又
,
设
为平面
的一个法向量,由
,
,
得
取
取
设
与
的夹角为
,二面角
为
,显然
为锐角,
,即为所求
20.解:(I)
或
故
的单调递增区间是
和
单调递减区间是(0,2)
(Ⅱ)

在
和
递增,在(-1,3)递减。
有三个相异实根

21.解:(I)设
的公差为
,则:

(Ⅱ)当
时,
,由
,得
当
时,
,
,即
是以
为首项,
为公比的等比数列。
(Ⅲ)由(Ⅱ)可知:


22.解:(I)设过
与抛物线
的相切的直线的斜率是
,
则该切线的方程为:
由
得

则
都是方程
的解,故
(Ⅱ)设
由于
,故切线
的方程是:
则
,同理
则直线
的方程是
,则直线
过定点(0,2)
(Ⅲ)要使
最小,就是使得
到直线
的距离最小,而
到直线
的距离

当且仅当
即
时取等号
设
由
得
,则



湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com