在区间上的值域. 查看更多

 

题目列表(包括答案和解析)

已知函数,求函数f(x)在区间上的值域.

查看答案和解析>>

已知函数,求函数f(x)在区间上的值域.

查看答案和解析>>

函数f(x)=cos(-
x
2
)+cos(
1
2
π-
x
2
),x∈R

(1)求f(x)的值域;
(2)求f(x)在[0,π)上的单调递减区间.

查看答案和解析>>

函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)与f(-1)的值;
(2)判断函数的奇偶性并证明;
(3)若x>1时,f(x)>0,求证f(x)在区间(0,+∞)上是增函数;
(4)在(3)的条件下,若f(4)=1,求不等式f(3x+1)≤2的解集.

查看答案和解析>>

函数f(x)是定义在[0,1]上的增函数,满足f(x)=2f(
x
2
)
且f(1)=1,在每个区间(
1
2i
1
2i-1
]
(i=1,2…)上,y=f(x)的图象都是斜率为同一常数k的直线的一部分.
(1)求f(0)及f(
1
2
)
f(
1
4
)
的值,并归纳出f(
1
2i
)(i=1,2,…)
的表达式
(2)设直线x=
1
2i
x=
1
2i-1
,x轴及y=f(x)的图象围成的矩形的面积为ai(i=1,2…),记S(k)=
lim
n→∞
(a1+a2+…+an)
,求S(k)的表达式,并写出其定义域和最小值.

查看答案和解析>>

一、选择题(每小题5分,共50分)

题号

1

2

3

4

5

6

7

8

9

10

答案

D

D

C

B

C

A

B

B

A

C

二、填空题(每小题4分,共24分)

11.6ec8aac122bd4f6e;     12.6ec8aac122bd4f6e;    13.6ec8aac122bd4f6e;    14.6ec8aac122bd4f6e;     15.6ec8aac122bd4f6e;     16.(4);

6ec8aac122bd4f6e

 

19.解:∵6ec8aac122bd4f6e6ec8aac122bd4f6e,∴6ec8aac122bd4f6e………………2分

6ec8aac122bd4f6e6ec8aac122bd4f6e,………………8分

∴sinb=sin[(a+b)-a]=sin(a+b)cosa-cos(a+b)sina=6ec8aac122bd4f6e………………12分

 

20.(1)f(x) 6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e…………4分

6ec8aac122bd4f6e

6ec8aac122bd4f6e得,对称轴方程为:6ec8aac122bd4f6e………………6分

(2)由6ec8aac122bd4f6e得,f(x)的单调递减区间为:6ec8aac122bd4f6e,k∈Z

    ………………9分

(3)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,则6ec8aac122bd4f6e

所以函数f(x)在区间6ec8aac122bd4f6e上的值域为6ec8aac122bd4f6e………………13分

 

21.解:(1)依题意,得6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,…………2分

∵最大值为2,最小值为-2,∴A=2∴6ec8aac122bd4f6e,………………4分

∵图象经过(0,1),∴2sinj=1,即6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,………………6分

6ec8aac122bd4f6e………………7分

(2)∵6ec8aac122bd4f6e,∴-2≤ f(x) ≤ 2

6ec8aac122bd4f6e6ec8aac122bd4f6e解得,6ec8aac122bd4f6e6ec8aac122bd4f6e………………12分

 

22.解:(1)6ec8aac122bd4f6e

6ec8aac122bd4f6e=2cos2x+cosx-1………………5分

(2)要使图象至少有一公共点,须使f(x)=g(x)在上至少有一解,

令t=cos x,∵x∈(0,p) ∴x与t一一对应,且t∈(-1,1),

即方程2t2+t-1 = t2+(a+1)t + (a-3)在(-1,1)上至少有一解,………………7分

整理得:t2-at+(2-a)=0

1°一解:f(1)?f(-1)=(3-2a)?3<0,解得:6ec8aac122bd4f6e………………9分

2°两解(含重根的情形):

6ec8aac122bd4f6e,解得:6ec8aac122bd4f6e,∴6ec8aac122bd4f6e……11分

综上所述:6ec8aac122bd4f6e………………12分

 

 

本资料由《七彩教育网》www.7caiedu.cn 提供!


同步练习册答案