(Ⅱ)因为四边形面积---8分 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥中,⊥底面,底面为正方形,分别是的中点.

(I)求证:平面

(II)求证:

(III)设PD=AD=a, 求三棱锥B-EFC的体积.

【解析】第一问利用线面平行的判定定理,,得到

第二问中,利用,所以

又因为,从而得

第三问中,借助于等体积法来求解三棱锥B-EFC的体积.

(Ⅰ)证明: 分别是的中点,    

.       …4分

(Ⅱ)证明:四边形为正方形,

.    ………8分

(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,

 

查看答案和解析>>

在棱长为的正方体中,是线段的中点,.

(1) 求证:^

(2) 求证://平面

(3) 求三棱锥的表面积.

【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用,得到结论,第二问中,先判定为平行四边形,然后,可知结论成立。

第三问中,是边长为的正三角形,其面积为

因为平面,所以

所以是直角三角形,其面积为

同理的面积为面积为.  所以三棱锥的表面积为.

解: (1)证明:根据正方体的性质

因为

所以,又,所以

所以^.               ………………4分

(2)证明:连接,因为

所以为平行四边形,因此

由于是线段的中点,所以,      …………6分

因为平面,所以∥平面.   ……………8分

(3)是边长为的正三角形,其面积为

因为平面,所以

所以是直角三角形,其面积为

同理的面积为,              ……………………10分

面积为.          所以三棱锥的表面积为

 

查看答案和解析>>


同步练习册答案