[解析]本小题考查三角函数的定义.两角和的正切.二倍角的正切公式. 查看更多

 

题目列表(包括答案和解析)

已知△的内角所对的边分别为.

 (1) 若, 求的值;

(2) 若△的面积 求的值.

【解析】本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力。第一问中,得到正弦值,再结合正弦定理可知,,得到(2)中所以c=5,再利用余弦定理,得到b的值。

解: (1)∵, 且,   ∴ .        由正弦定理得,    ∴.    

   (2)∵       ∴.   ∴c=5      

由余弦定理得

 

查看答案和解析>>

在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=

(Ⅰ)求角B的大小;

(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1),  有最大值为3,求k的值.

【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用

第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.

 

查看答案和解析>>


同步练习册答案