甲和乙两名同学做数学游戏:分别抛掷一枚正四面体骰子和一枚正六面体骰子.把正四面体骰子面朝下的数字x和正六面体骰子面朝上的数字y看成一点坐标(x.y).并判断该点是否在函数的图象上.若在.则甲得10分.若不在.则乙得1分.先得到100分者获胜.(1) 请你用列举法.表示出两人抛掷骰子得到的点的坐标(x.y)的所有可能情况,(2) 如果你也参加这个游戏.愿意当甲还是当乙?请你结合概率说明理由. 查看更多

 

题目列表(包括答案和解析)

甲、乙两个同学做数学游戏,规则是:甲先报一个不为零的数,乙就说出甲所说数的两倍小1的数,接着甲说出比乙所说数小1的数,乙又说出甲第二次所说数的2倍,如此下去,先报0者为胜.若你是甲,为了取胜,你应报怎么样的数?请至少举出四个数.

查看答案和解析>>

(2012•历下区一模)如图所示,江北第一楼--超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:
甲:我站在此处看楼顶仰角为45°.
乙:我站在你后面37m处看楼顶仰角为30°.
甲:我的身高是1.7m.
乙:我的身高也是1.7m.
请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算
2
≈1.414,
3
≈1.732

查看答案和解析>>

如图所示,江北第一楼--超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:
甲:我站在此处看楼顶仰角为45°.
乙:我站在你后面37m处看楼顶仰角为30°.
甲:我的身高是1.7m.
乙:我的身高也是1.7m.
请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算

查看答案和解析>>

如图所示,江北第一楼--超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用作业宝假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:
甲:我站在此处看楼顶仰角为45°.
乙:我站在你后面37m处看楼顶仰角为30°.
甲:我的身高是1.7m.
乙:我的身高也是1.7m.
请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算数学公式

查看答案和解析>>

甲、乙两名同学对转盘游戏进行了实验:具体操作如下:甲转A转盘,乙转B转盘,每转一次,二人将指针所指的颜色的和作了记录,(红+红=红;蓝+蓝=蓝;红+蓝=紫;)他们进行了若干次实验,记录结果如下表:
颜色
次数 202 600
甲、乙两名同学分别将实验结果汇制成精英家教网
扇形统计图和条形统计图,如下图:
精英家教网
(1)他们实验的总次数是:
 
.并补充条形统计图.
(2)颜色的和为红色出现的频率是:
 
.(结果保留1%),扇形统计图中红色的圆心角为
 
度.(结果保留三个有效数字)
(3)用树状图分析将转盘A和转盘B各转一次,颜色的和为红色的概率.根据以上计算验证了教材中哪一句话是
 

查看答案和解析>>

一、选择题

1. B;  2. B;  3. B;  4. C;  5. A; 6. C.

二、填空题

7. x≥―1且x≠2;  8. 9;   9.  97;  10. 答案不唯一,如等; 

11. 略;  12. ; 13.  6,150;  14.  4; 15. .

三、解答题

16.原式=    ------------------------------4分

= -- --------------------------------------------------------------6分

= .-----------------------------------------------------------------------------7分

17.(1) 证明:在中,--2分

分别是的中点,∴.   ∴.---------4分

(2) 四边形是矩形.

证明:∵四边形是菱形,∴.      ----------------5分

.     -----------------------------------------------------------------------6分

∴四边形是平行四边形.        ------------- 7分

∴四边形是矩形.     ------------------------------------------------------------- 8分

18.解:过,垂足为,   ----------------------------------------1分

中,   ----------------------3分

中, ,∴    ------------------5分

         ------------------------------------6分

               --------------------8分

19.(1)证明:在等腰梯形中,

        --------------------------------------------------1分

.                      -------------3分

(2) 解:过分别作,垂足分别为.

       --------------------------------------------------------------------5分

,  ∴              ----------------------------------------------6分

,∴          ------------------------------------------------------7分

(2)  解:存在.

由(1)知.∴.   -----------------------------------------8分

,∴.          ---------------------------------------9分

解得:        --------------------------------------------------------10分

20.解:(1)原来一天可获得的利润为 (元)-------2分

(2). ① 由题意,得.

.                              ------------------4分

.                           ----------------------------------------------- 5分

② 当时,. ----------------------------6分

解这个方程,得.  ----------------------------------------------------------------8分

 答:出售单价是77元或73元. ----------------------------------------------------------------9分

 73元77元.                             ----------------------- 10分

21.解:(1)列表格如下:

1

2

3

4

5

6

1

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

2

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

3

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

4

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

----------------------------------------5分

⑵由函数解析式可知:只有点(1,4)和(3,1)在其图像上,所以,甲获胜的概率是,即平均每12次才获胜1次,得10分;而乙获胜的概率是,即平均每12次获胜11次,得11分,所以我愿意当乙.--------------------- 10分

22.(1) 四边形是平行四边形.            ------------------------------1分

证明:.又,..

四边形是平行四边形.    -----------------------------------4分

(2) 的重心,.    ---------------------------5分

由(1)的证明过程,可知分别是边长为的正三角形.

的距离为.即. -----------------8分,时, 四边形的面积有最大值是.

此时,重合,, 四边形是菱形. -------------------------11分

23.解:⑴过点轴,垂足为,由垂径定理,得的中点,

.轴相切于中,

的坐标是.            -----------------2分

的解析式为.将两点的坐标代入,得解得所在直线的解析式为         --------------------- 4分

(2) ∵,∴连结.

,∴          -----------------------6分

是直径,∴

         -------------------------------------------------------------------8分

(3) 判断:不存在.      ----------------------------------------------------------------- 9分

假设存在点,使为等边三角形.则.连结,那么.,利用的面积,可得,不与重合, .这与等边三角形定义矛盾.

假设不成立.即点不存在. ----------------------------------------------------------- 12分-

 

 

 


同步练习册答案