第-个图案黑色瓷砖数依次为:15-3=12,24-8=16,35-15=20,-由此可猜测第(n)个图案黑色瓷砖数为:12+(n-1)×4=4n+8 查看更多

 

题目列表(包括答案和解析)

精英家教网请考生在第(1),(2),(3)题中任选一题作答,如果多做,则按所做的第一题记分.
(1)选修4-1:几何证明选讲
如图,在△ABC中,D是AC的中点,E是BD的中点,AE的延长线交BC于F.
(Ⅰ)求
BF
FC
的值;
(Ⅱ)若△BEF的面积为S1,四边形CDEF的面积为S2,求S1:S2的值.
(2)选修4-4:坐标系与参数方程
以直角坐标系的原点O为极点,a=
π
6
轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角a=
π
6

( I)写出直线l的参数方程;
( II)设l与圆ρ=2相交于两点A、B,求点P到A、B两点的距离之积.
(3)选修4-5:不等式选讲
已知函数f(x)=|2x+1|+|2x-3|.
(I)求不等式f(x)≤6的解集;
(II)若关于x的不等式f(x)>a恒成立,求实数a的取值范围.

查看答案和解析>>

下图中的三角形称为谢宾斯基(Sierpinski)三角形.这些三角形中的着色与未着色的三角形的个数具有一定的规律.按图(1)、(2)、(3)、(4)四个三角形的规律继续构建三角形,设第n个三角形中包含f(n)个未着色三角形.

(Ⅰ)求出f(5)的值;
(Ⅱ)写出f(n+1)与f(n)之间的关系式,并由此求出f(n)的表达式;
(Ⅲ)设an=
2f(n+1)+1
f(n+1)•f(n+2)
(n∈N*)
,数列{an}的前n项和为Sn,求证:
3
4
Sn<1

查看答案和解析>>

在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.9KΩ,1.1KΩ,2.7KΩ,3KΩ,3.6KΩ,4KΩ,5KΩ等七种阻值不等的定值电阻,他用分数法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的阻值是(  )
A、1.1KΩB、2.7KΩC、3.6KΩD、5KΩ

查看答案和解析>>

某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当住第n层楼时,上下楼造成的不满意度为n,但高处空气清新,嘈杂音较小,环境较为安静,因此随楼层升高,环境不满意度降低,设住第n层楼时不满意度为
8
n
,则此人应选(  )
A、1楼B、2楼C、3楼D、4楼

查看答案和解析>>

(2012•孝感模拟)孝感雕花剪纸有着悠久的历史,既有北方粗犷苍劲的风格,又有南方玲珑细腻的特点.下图(1)、(2)、(3)、(4)为她们剪纸的四个图案,这些图案都是由小正方形构成,小正方形数越多剪纸越漂亮.现按同样的规律剪纸(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.则f(n)的表达式为
2n2-2n+1
2n2-2n+1

查看答案和解析>>


同步练习册答案