题目列表(包括答案和解析)
已知函数
.
(Ⅰ)若
值点,求a的值;
(Ⅱ)求证:当0<a≤2时,f(x)在
上是增函数;
(Ⅲ)若对任意的
,总存在
,使不等式
成立,求实数m的取值范围.
已知函数f(x)=mx3+nx2(m、n∈R ,m≠0)的图像在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1, 关于x的方程:
在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
(可不用证明函数的连续性和可导性)
已知函数f(x)在(-1,1)上有定义,f(
)=-1,当且仅当0<x<1时f(x)<0,且对任意x、y∈(-1,1)都有f(x)+f(y)=f(
),试证明:w.w.w.k.s.5.u.c.o.m
已知函数
,
.
(Ⅰ)若函数
和函数
在区间
上均为增函数,求实数
的取值范围;
(Ⅱ)若方程
有唯一解,求实数
的值.
【解析】第一问,
当0<x<2时,
,当x>2时,
,
要使
在(a,a+1)上递增,必须![]()
![]()
如使
在(a,a+1)上递增,必须
,即![]()
由上得出,当
时
,
在
上均为增函数
(Ⅱ)中方程
有唯一解
有唯一解
设
(x>0)
随x变化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
极小值 |
|
由于在
上,
只有一个极小值,![]()
的最小值为-24-16ln2,
当m=-24-16ln2时,方程
有唯一解得到结论。
(Ⅰ)解:
当0<x<2时,
,当x>2时,
,
要使
在(a,a+1)上递增,必须![]()
![]()
如使
在(a,a+1)上递增,必须
,即![]()
由上得出,当
时
,
在
上均为增函数 ……………6分
(Ⅱ)方程
有唯一解
有唯一解
设
(x>0)
随x变化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
极小值 |
|
由于在
上,
只有一个极小值,![]()
的最小值为-24-16ln2,
当m=-24-16ln2时,方程
有唯一解
已知y=x(x-1)(x+1)的图像如图所示,今考虑f(x)=x(x-1)(x+1)+0.01,对于方程式f(x)=0根的情况,以下说法正确的是________.(填上正确的序号)
①有三个实根;
②当x<-1时,恰有一实根;
③当-1<x<0时,恰有一实根;
④当0<x<1时,恰有一实根;
⑤当x>1时,恰有一实根.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com