故当n=4时.取最大值3.n=3时.取最小值-1. ---------14分 查看更多

 

题目列表(包括答案和解析)

 已知函数在区间[0,m]上有最大值3,最小值2,则m的取值范围是(   )

A、[ 1,+∞)  B、[0,2]    C、(-∞,2]    D、[1,2]

 

查看答案和解析>>

在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=

(Ⅰ)求角B的大小;

(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1),  有最大值为3,求k的值.

【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用

第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.

 

查看答案和解析>>

函数y=f(x)为定义在R上的减函数,函数y=f(x-1)的图象关于点(1,0)对称,x,y满足不等式f(x2-2x)+f(2y-y2)≤0,M(1,2),N(x,y),O为坐标原点,则当1≤x≤4时,
OM
ON
的取值范围为(  )

查看答案和解析>>

函数y=f(x)为定义在R上的减函数,函数y=f(x-1)的图象关于点(1,0)对称,x,y满足不等式f(x2-2x)+f(2y-y2)≤0,M(1,2),N(x,y),O为坐标原点,则当1≤x≤4时,的取值范围为( )
A.[12,+∞]
B.[0,3]
C.[3,12]
D.[0,12]

查看答案和解析>>

函数y=f(x)为定义在R上的减函数,函数y=f(x-1)的图象关于点(1,0)对称,x,y满足不等式f(x2-2x)+f(2y-y2)≤0,M(1,2),N(x,y),O为坐标原点,则当1≤x≤4时,的取值范围为( )
A.[12,+∞]
B.[0,3]
C.[3,12]
D.[0,12]

查看答案和解析>>


同步练习册答案