1)求证数列{}是等比数列, 查看更多

 

题目列表(包括答案和解析)

已知各项均为正整数的数列{an}满足a1<4,an+1=2an+1,且
n
i=1
1
1+ai
1
2
对任意n∈N恒成立.数列{an},{bn}满足等式2(λn+bn)=2nλn+an+1(λ>0).
(1)求证数列{ an+l}是等比数列,并求出{an}的通项公式;
(2)求数列{bn}的前n项和Sn
(3)证明存在k∈N,使得
bn+1
bn
bk+1
bk
对任意n∈N均成立.

查看答案和解析>>

数列{an}的前n项和为sn,sn=2an-3n(n∈N*).
(1)求证数列{an+3}是等比数列;
(2)求数列{an}的通项公式;
(3)数列{an}中是否存在三项,它们可以构成等差数列.若存在,请给出一组适合条件的项,若不存在,请说明理由.

查看答案和解析>>

已知负数a1和正数b1,且对任意的正整数n,当
an+bn
2
≥0时,有[an+1,bn+1]=[an
an+bn
2
];当
an+bn
2
<0时,有[an+1,bn+1]=[
an+bn
2
,bn].
(1)求证数列{bn-an}是等比数列;
(2)若a1=-1,b1=2,求证a2n=-2b2n(n∈N*);
(3)是否存在a1,b1,使得数列{an}为常数数列?请说明理由.

查看答案和解析>>

数列{an} 中,a1=1,且点(an,an+1)(n∈N*)在函数f(x)=x+2的图象上.
(Ⅰ)求数列{an} 的通项公式;
(Ⅱ)设数列{bn}满足bn=2an-1,求证数列{bn},是等比数列,并求其前n项和Sn

查看答案和解析>>

例4.已知数列{an}中,a1=3,对于nN,以an,an+1为系数的一元二次方程anx2-2 an+1x+1=0
都有根α、β且满足(α-1)(β-1)=2.
(1)求证数列{an-
13
}
是等比数列.
(2)求数列{an}的通项公式.

查看答案和解析>>


同步练习册答案